Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T00:57:06.800Z Has data issue: false hasContentIssue false

Evolution of Ti Schottky Barrier Heights on n-Type GaN with Annealing

Published online by Cambridge University Press:  10 February 2011

Michèle T. Hirsch
Affiliation:
Department of Materials Science and Mineral Engineering, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Kristin J. Duxstad
Affiliation:
Department of Materials Science and Mineral Engineering, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
E. E. Haller
Affiliation:
Department of Materials Science and Mineral Engineering, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Get access

Abstract

We report the effect of mild annealing on Ti Schottky diodes on n-type GaN. The Ti films were deposited by electron beam evaporation on n-type GaN grown by metal organic vapor deposition. We determine the effective barrier height Ф60 by current-voltage measurements as a function of temperature. The as-deposited Ti contacts show rectifying behavior with low barrier heights Ф60 ≤ 200meV. At annealing temperatures as low as 60°C we observe an increase of the barrier height to values of 250meV. After annealing at 230°C and above a stable barrier height of 450meV is measured. The increase in barrier height is not due to any macroscopic interfacial reaction. The origin of the observed changes are discussed in terms of the Schottky-Mott model and possible microscopic interfacial reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z.F., Allen, L. H. and Morkoc, H., Appl. Phys. Lett. 64, 1003 (1994).Google Scholar
[2] Fan, Z., Mohammad, S. N., Kim, W., Aktas, Ö., Botchkarev, A. E., and Morkoc, H., Appl. Phys. Lett. 68, 1672 (1996).Google Scholar
[3] Binari, S. C., Dietrich, H. B., Kelner, G., Rowland, L. B., Doverspike, K., and Gaskill, D. K., Electron. Lett. 30, 909 (1994).Google Scholar
[4] Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 63, 2676 (1993).Google Scholar
[5] Wang, L., Nathan, M. I., Lim, T.-H., Khan, M. A. and Chen, Q., Appl. Phys. Lett. 68, 1267 (1996)Google Scholar
[6] Kalinina, E. V., Kuzenetsov, N., Dmitriev, V. A., and Irvine, K. G. and Carter, C. H. JR.,, Journ. of Electron. Mat. 25 831 (1996).Google Scholar
[7] Schmitz, A. C., Ping, A. T., Khan, M. A., Chen, Q., Yang, J. W., Adesida, I., Electron. Lett, (accepted for publication).Google Scholar
[8] Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 62, 2859 (1993).Google Scholar
[9] Werner, J. H., Appl. Phys. A 47, 291294 (1988).Google Scholar
[10] Rhoderick, E. H. and Williams, R. H. in Metal-Semiconductor Contacts, (Clarendon, Oxford, 1988).Google Scholar
[11] Kurtin, S., McGill, T. C. and Mead, C. A., Phys. Rev. Lett. 22, 1433, (1963).Google Scholar
[12] Ruvimov, S., Liliental-Weber, Z., Washburn, J., Duxstad, K. J., Haller, E. E., Fan, Z.-F., Mohammad, S. N., Kim, W., Botchkarev, A. E., and Morkoc, H., Appl. Phys. Lett. 69, 1556, (1996).Google Scholar
[13] Mönch, W. in Semiconductor Surfaces and Interfaces, pp. 74, (Springer, Berlin, 1993).Google Scholar