Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T21:39:19.644Z Has data issue: false hasContentIssue false

Evolution of Superconducting and Hidden Order Phases in URu2Si2 Under Applied Pressure

Published online by Cambridge University Press:  01 February 2011

M. Brian Maple
Affiliation:
mbmaple@physics.ucsd.edu, University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
Jason R. Jeffries
Affiliation:
mbmaple@physics.ucsd.edu, University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
Nicholas P. Butch
Affiliation:
nbutch@physics.ucsd.edu, University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
Benjamin T. Yukich
Affiliation:
mbmaple@physics.ucsd.edu, University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
Get access

Abstract

Electrical resistivity measurements performed under applied hydrostatic pressure and in magnetic fields have been used to probe the hidden order (HO) and superconducting (SC) states of URu2Si2, which have ambient-pressure transition temperatures TO = 17.5 K and Tc = 1.5 K, respectively. TO increases with applied pressure and a distinct kink in its pressure dependence is observed at 15 kbar; this feature is associated with the onset of antiferromagnetism. The pressure dependence of the SC upper critical field has been measured with the external field aligned parallel to both crystalline axes. The SC phase is smoothly suppressed to a critical pressure of about 15 kbar and no qualitative change in the critical field curves is observed. The co-evolution of the HO and SC phases is discussed within the context of a model in which the two phases compete for Fermi surface fraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Palstra, T. T. M., Menovsky, A. A., Berg, J. van den, Dirkmaat, A. J., Kes, P. H., Nieuwenhuys, G. J. and Mydosh, J. A., Phys. Rev. Lett. 55, 2727 (1985).Google Scholar
2 Schlabitz, W. Baumann, J. Pollit, B. Rauchschwalbe, U. Mayer, H. M., Ahlheim, U. and Bredl, C. D., Z. Phys. B 62, 171 (1986).Google Scholar
3 Maple, M. B., Chen, J. Dalichaouch, Y. Kohara, T. Rossel, C. Torikachvili, M. S., McElfresh, M. W. and Thompson, J. D., Phys. Rev. Lett. 56, 185 (1986).10.1103/PhysRevLett.56.185Google Scholar
4 Fawcett, E. Rev. Mod. Phys. 60, 209 (1988).Google Scholar
5 McElfresh, M. W., Thompson, J. D., Willis, J. O., Maple, M. B., Kohara, T. and Torikachvili, M. S., Phys. Rev. B 35, 43 (1987).Google Scholar
6 Palstra, T. T. M., Menovsky, A. A. and Mydosh, J. A., Phys. Rev. B 33, 6527 (1986).Google Scholar
7 Bonn, D. A., Garrett, J. D. and Timusk, T. Phys. Rev. Lett. 61, 1305 (1988).Google Scholar
8 Park, J.-G., McEwen, K. A., deBrion, S. Chouteau, G. Amitsuka, H. and Sakakibara, T. J. Phys.: Condens. Matter 9, 3065 (1997).Google Scholar
9 Sharma, P. A., Harrison, N. Jaime, M. Oh, Y. S., Kim, K. H., Batista, C. D., Amitsuka, H. and Mydosh, J. A., Phys. Rev. Lett. 97, 156401 (2006).Google Scholar
10 Pfleiderer, C. Mydosh, J. A. and Vojta, M. Phys. Rev. B 74, 104412 (2006).Google Scholar
11 Broholm, C. Kjems, J. K., L, W. J.. Buyers, , Matthews, P. M, T. T.. Palstra, , Menovsky, A. A. and Mydosh, J. A., Phys. Rev. Lett. 58, 1467 (1987).10.1103/PhysRevLett.58.1467Google Scholar
12 Chandra, P. Coleman, P. Mydosh, J. A. and Tripathi, V. Nature 417, 1831 (2002).10.1038/nature00795Google Scholar
13 Santini, P. and Amoretti, G. Phys. Rev. Lett. 73, 1027 (1994).Google Scholar
14 Fazekas, P. Kiss, A. and Radnpczi, K., Preprint cond-mat/0506504 (2005).Google Scholar
15 Kiss, A. and Fazekas, P. Phys. Rev. B 71, 054415 (2005).Google Scholar
16 Okuno, Y. and Miyake, K. J. Phys. Soc. Japan 67, 2469 (1998).Google Scholar
17 Agterberg, D. F. and Walker, M. B., Phys. Rev. B 50, 563 (1994).10.1103/PhysRevB.50.563Google Scholar
18 Ikeda, H. and Ohashi, Y. Phys. Rev. Lett. 81, 3723 (1998).Google Scholar
19 Mineev, V. P. and Zhitomirsky, M. E., Phys. Rev. B 72, 014432 (2005).Google Scholar
20 Barzykin, V. and Gor'kov, L. P., Phys. Rev. Lett. 70, 2479 (1993).Google Scholar
21 Varma, C. and Zhu, L. Phys. Rev. Lett. 96, 036405 (2006).Google Scholar
22 Amitsuka, H. Sato, M. Metoki, N. Yokoyama, M. Kuwahara, K. Sakakibara, T. Morimoto, H. Kawarazaki, S. Miyako, Y. and Mydosh, J. A., Phys. Rev. Lett. 83, 5114 (1999).Google Scholar
23 Brison, J. P., Keller, N. Lejay, P. Huxley, A. Schmidt, L. Buzdin, A. Bernhoeft, N. R., Mineev, I. Stepanov, A. N., Flouquet, J. Jaccard, D. Julian, S. R. and Lonzarich, G. G., Physica B 199–200, 70 (1994).Google Scholar
24 Amitsuka, H. Tenya, K. Yokoyama, M. Schenck, A. Andreica, D. Gygax, F. N., Amato, A. Miyako, Y. Huang, Y. K. and Mydosh, J. A., Physica B 326, 418 (2003).Google Scholar
25 Matsuda, K. Kohori, Y.. Kohara, T., Kuwahara, K. and Amitsuka, H. Phys. Rev. Lett. 87, 087203 (2001).Google Scholar
26 Matsuda, K. Kohori, Y. Kohara, T. Amitsuka, H. Kuwahara, K. and Matsumoto, T. J. Phys.: Condens. Matter 15, 2363 (2003).Google Scholar
27 Mineev, V. P. and Zhitomirsky, M. E., Phys. Rev. B 72, 014432 (2005).Google Scholar
28 Bourdarot, F. Bombardi, A. Burlet, P. Enderle, M. Flouquet, J. Leja, P. Kernavanois, N. Mineev, V. P., Paolasini, L. Zhitomirsky, M. E. and Fåk, B., Physica B 359–361, 986 (2005).Google Scholar
29 Knebel, G. Izawa, K. Bourdarot, F. Hassinger, E. Salce, B. Aoki, D. and Flouquet, J. J. Magn. Magn. Mater. 310, 195 (2007).10.1016/j.jmmm.2006.10.007Google Scholar
30 Motoyama, G. Nishioka, T. and Sato, N. Phys. Rev. Lett. 90, 166402 (2003).10.1103/PhysRevLett.90.166402Google Scholar
31 Kwok, W. K., DeLong, L. E., Crabtree, G. W., Hinks, D. G. and Joynt, R. Phys. Rev. B 41, 11649 (1990).Google Scholar
32 Bakker, K. deVisser, A. Bruck, E. Menovsky, A. A. and M, J. J.. Franse, , J. Magn. Magn. Mater. 108, 63 (1992).Google Scholar
33 Guillaume, A. Salce, B. Flouquet, J. and Lejay, P. Physica B 259–261, 652 (1999).Google Scholar
34 Mason, T. Gaulin, B. Garrett, J. D., Tun, Z. Buyers, W.J.L. and Isaacs, E. D., Phys. Rev. Lett. 65, 3189 (1990).Google Scholar
35 Smith, T. F., Chu, C. W. and Maple, M. B., Cryogenics 9, 53 (1969).Google Scholar
36 Jeffries, J. R., Butch, N. P., Yukich, B. T. and Maple, M. B., Phys. Rev. Lett. 99, 217207 (2007).Google Scholar
37 Jeffries, J. R., Butch, N. P., Yukich, B. T. and Maple, M. B., J. Phys.:Condens. Matter 20, 095225 (2008).Google Scholar
38 Jayaraman, A. Hutson, A. R., McFee, J. H., Coriell, A. S. and Maines, R. G., Rev. Sci. Instrum. 38, 44 (1967).Google Scholar
39 Andersen, N. H. and Smith, H. Phys. Rev. B 19, 384 (1979).10.1103/PhysRevB.19.384Google Scholar
40 Andersen, N. H., Crystalline Electric Field and Structural Effects in f-electron Systems, eds. E. Crow, J., Guertin, R. P. and Mihalisin, T. W. (Plenum, New York, 1980) p. 373.Google Scholar
41 Larrea, J. M, J. M.. Fontes, , Alvarenga, A. D., Baggio-Saitovitch, E. M., Burghardt, T. Eichler, A. and Continentino, M. A., Phys. Rev. B 72, 035129 (2005).Google Scholar
42 M, S. A.. Mentink, , Mason, T. E., Süllow, S., Nieuwenhuys, G. J., Menovsky, A. A., Mydosh, J. A. and Perenboom, J.A.A. J., Phys. Rev. B 53, R6014 (1996).Google Scholar
43 Wiebe, C. R., Janik, J. A., MacDougall, G. J., Luke, G. M., Garrett, J. D., Zhou, H. D., Jo, Y.-J. Balicas, L. Qiu, Y. D, J. R.. Copley, , Yamani, Z. and Buyers, W. J. L., Nat. Phys. 3, 96 (2007).Google Scholar
44 Sato, N. Uemura, S. Motoyama, G. and Nishioka, T. Physica B 378–380, 576 (2006).10.1016/j.physb.2006.01.154Google Scholar
45 Bardeen, J. Cooper, L. N. and Schrieffer, J. R., Phys. Rev. 108, 1175 (1957).Google Scholar
46 Bilbro, G. and McMillan, W. L., Phys. Rev. B 14, 1887 (1976).10.1103/PhysRevB.14.1887Google Scholar
47 Machida, K. J. Phys. Soc. Japan 50, 2195 (1981).; K. Machida and T. Matsubara, J. Phys. Soc. Japan 50 3231 (1981).; K. Machida, J. Phys. Soc. Japan 51, 1420 (1982).; K. Machida, J. Phys. Soc. Japan 52, 1333 (1983).Google Scholar
48 Fisher, R. A., Kim, S. Wu, Y. Phillips, N. E., McElfresh, M. W., Torikachvili, M. S. and Maple, M. B. Physica B 163, 419 (1990).Google Scholar
49 Inada, Y. and Onuki, Y. J. Low Temp. Phys. 25, 573 (1999).10.1063/1.593787Google Scholar
50 Ito, T. Kumigashira, H. Takahashi, T. Haga, Y. Yamamoto, E. Honma, T. Ohkuni, H. and Onuki, Y. Phys. Rev. B 60, 13390 (1999).Google Scholar
51 Denlinger, J. D., Gweon, G. H., Allen, J. W., Olson, C. G., Maple, M. B., Sarrao, J. L., Armstrong, P. E., Fisk, Z. and Yamagami, H. J. Electron Spectrosc. Relat. Phenom. 117, 347 (2001).Google Scholar
52 Nakashima, M. Ohkuni, H. Inada, Y. Settai, R. Haga, Y. Yamamoto, E. and Onuki, Y. J. Phys.: Condens. Matter 15, S2011 (2003).Google Scholar