Skip to main content Accessibility help
×
Home

Evolution of Structural and Optical Properties on PIN and NIP pm-Si:H Devices During 400 Hrs of Light-Soaking

  • Leon Hamui (a1), Pere Roca i Cabarrocas (a2) and Guillermo Santana (a1)

Abstract

Pm-Si:H PIN and NIP solar cells structures grown using plasma enhanced chemical vapor deposition (PECVD) technique were analyzed during 400 hrs of light-soaking exposition. The evolution of the structural and optical properties was observed and characterized by Raman spectroscopy, spectroscopic ellipsometry. The effect observed is related to defects creation due to induced hydrogen diffusion, break of Si-H bonds and the generation of dangling bonds that causes less passivated films. The film microstructure, and therefore the optical properties varied with the exposition time. The crystalline fraction of these structures presents a slight decrease and it is observed to be between 15 to 24% for the PIN and 5 to 10% for the NIP. The optical gap increases from 1.66 to 1.68 eV for the PIN structure while for the NIP no significant change is observed during light-soaking. Hydrogen diffusion during lights soaking generates a decrease on the absorption properties of the films which in turn is expected to reduce the device efficiency during operation. In this work we show that long range motion of hydrogen during light-soaking causes a hydrogen rearrangement on the film and microstructure changes. We determined that there is not an pronounced change on the film structure during prolonged light exposition related to the stability of the pm-Si:H films. The PIN structure properties are more affected during light soaking in comparison to the NIP structure which is expected to cause less degradation of its optoelectronic properties under illumination, and a more stable device during operation.

Copyright

References

Hide All
1. Butté, R., Vignoli, S., Meaudre, M., Meaudre, R., Marty, O., Saviot, L. and Roca i Cabarrocas, P., J. Non-Cryst. Solids 266-269, 263268 (2000).
2. Soro, M.Y., Gueunier-Farret, M.E. and Kleider, J.P., J. Appl. Phys. 109, 023713 (2011).
3. Sopori, B.L., Deng, X., Benner, J.P., Rohatgi, A., Sana, P., Estreicher, S.K., Park, Y.K. and Roberson, M.A., Solar Ener. Mater. & Solar Cells 41-42, 159169 (1996).
4. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292294 (1977)
5. Baek, S., Iftiquar, S.M., Jang, J., Lee, S., Kim, M., , Jung, J, Park, H., Park, J., Kim, Y., Shin, C., Lee, Y.J. and Yi, J., Applied Surface Science 260, 1722 (2012).
6. Kail, F., Fellah, S., Abramov, A., Hadjadj, A. and Roca i Cabarrocas, P., Journal of Non-Crystalline Solids 352, 10831086 (2006).
7. Yamasaki, S., Das, U.K. and Yasuda, T., Journal of Non-Crystalline Solids 299-302, 185190 (2002).
8. Kim, K.H., Johnson, E.V. and Roca i Cabarrocas, P., Solar Ener. Mater. & Solar Cells, 105, 208212 (2012)
9. Pham, N., Hadjadj, A., Roca i Cabarrocas, P., Jbara, O. and Kail, F., Thin Solid Films 517, 62256229 (2009).
10. Roca i Cabarrocas, P., Chevrier, J.B., Huc, J., Lloret, A., Parey, J.Y. and Schmitt, J.P.M., Journal of Vacuum Science and Technology A9, 23312341 (1991).
11. Kim, K.H., Johnson, E.V., Abramov, A. and Roca i Cabarrocas, P., EPJ Photovolt 3, 30301 (2012).
12. Fontcuberta i Morral, A., Clerc, C. and Roca i Cabarrocas, P., Phys. Rev. B 69, 125307 (2004).
13. Kail, F., Hadjadj, A. and Roca i Cabarrocas, P., Thin Solid Films 487, 126131 (2005).
14. Smeets, D., Johnson, B.C., McCallum, J.C. and Comrie, C.M., Nucl. Instr. Meth. Phys. Res. B 269, 26572661 (2011).
15. Johnson, B.C., McCallum, J.C., Atanacio, A.J. and Prince, K.E., Appl. Phys. Lett. 95 101911 (2009).

Keywords

Evolution of Structural and Optical Properties on PIN and NIP pm-Si:H Devices During 400 Hrs of Light-Soaking

  • Leon Hamui (a1), Pere Roca i Cabarrocas (a2) and Guillermo Santana (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed