Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-05T23:36:57.092Z Has data issue: false hasContentIssue false

Evolution of Cubic FeSi2 in Si upon Thermal Annealing

Published online by Cambridge University Press:  21 February 2011

X.X. Lin
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, CA 94720
J. Desimoni
Affiliation:
Centre de Spectromètrie Nucléaire et Spectromètrie de Masse, Bât. 108, 91405 Orsay Campus, France
H. Bemas
Affiliation:
Centre de Spectromètrie Nucléaire et Spectromètrie de Masse, Bât. 108, 91405 Orsay Campus, France
Z. Liliental-Weber
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, CA 94720
J. Washburn
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, CA 94720
Get access

Abstract

Cubic FeSi2 precipitates were produced in Si (001) wafers by Fe implantation at room temperature, followed by ion beam-induced crystallization at 320°C, and their stability upon thermal annealing was examined by transmission electron microscopy. We found that the cubic phase remains relatively stable for a 650°C anneal, but the precipitates tend to change from an aligned to a twinned orientation with respect to the Si matrix. For higher temperature (800 and 900°C) anneals, most of the precipitates are transformed into β-FeSi2, accompanied by substantial precipitate coarsening. For platelet-shaped precipitates, the coarsening activation energy was determined to be 3.48 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Onda, N., Henz, J., Müller, E., Mäder, K.A., and Känel, H. von, Appl. Surf. Sci. 56–58, 421 (1992); H. von Känel, K.A. Mäder, E. Müller, N. Onda, and H. Sirringhaus, Phys. Rev. B 45, 13807 (1992); V. Le Thanh, J. Chevrier, and J. Derrien, Phys. Rev. B 46, 15946 (1992); H. Moritz, B. Rösen, S. Popovic, A. Rizzi, and H. Lüth, J. Vac. Sci. Technol. B10, 1704 (1992); U. Kafader, C. Pirri, P. Wetzel, and G. Gewinner, Appl. Surf. Sci. 64, 297 (1993).Google Scholar
2. Desimoni, J., Bernas, H., Behar, M., Lin, X.W., Washburn, J., and Liliental-Weber, Z., Appl. Phys. Lett., 62, 306 (1993); J. Desimoni, M. Behar, H. Bernas, X.W. Lin, Z. Liliental-Weber, and J. Washburn, Nucl. Instrum. Meth. (in press).CrossRefGoogle Scholar
3. Lin, X. W., Behar, M., Desimoni, J., Bernas, H., Washburn, J., and Liliental-Weber, Z., Appl. Phys. Lett. (in press); X. W. Lin, M. Behar, J. Desimoni, H. Bernas, W. Swider, Z. Liliental-Weber, and J. Washburn, Mat. Res. Soc. Symp. Proc. 279, xxx (1992) (in press).Google Scholar
4. Oostra, D.J., Vandenhoudt, D.E.W., Bulle-Lieuwma, C.W.T., and Naburgh, E.P., Appl. Phys. Lett. 59, 1737 (1991); K. Radermacher, S. Mantl, Ch. Dieker, and H. Lifth, Appl. Phys. Lett. 59, 2145 (1991).Google Scholar
5. Ferrante, M. and Doherty, R.D., Acta Metall. 27, 1603 (1979).Google Scholar
6. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961); J.W. Martin and R.D. Doherty, Stability of Microstructure in Metallic Systems, (Cambridge University Press, London, 1976).Google Scholar
7. Bulle-Lieuwma, C.W.T., Ommen, A.H. Van, Vandenhoudt, D.E.W., Ottenheim, J.J.M., and Jong, A.F. de, J. Appl. Phys. 70, 3093 (1991); R. Hull, Y.F. Hsieh, A.E. White, and K.T. Short, Appl. Phys. Lett. 59, 3467 (1991).Google Scholar
8. Weber, E.R., Appl. Phys. A 30, 1 (1983).CrossRefGoogle Scholar