Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T13:06:45.242Z Has data issue: false hasContentIssue false

Evidence For Non-Correlation Between The 0.15 eV And 0.44 eV Cu-Related Acceptor Levels In GaAs

Published online by Cambridge University Press:  15 February 2011

K. Leosson
Affiliation:
Science Institute, University of Iceland, Dunhagi 3, Reykjavik, Iceland
H. P. Gislason
Affiliation:
Science Institute, University of Iceland, Dunhagi 3, Reykjavik, Iceland
Get access

Abstract

We present investigations on the two dominating acceptor levels observed in Cu-diffused GaAs which have frequently been attributed to the two ionization levels of a double CuGa acceptor. We employed plasma hydrogenation and lithium diffusion followed by reverse-bias and zero-bias annealing to passivate and subsequently reactivate the Cu-related acceptor levels. Deep-level current-transient spectroscopy measurements reveal that the two levels are independently reactivated, strongly indicating that they arise from different defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hall, R.N. and Racette, J.H., J. Appl. Phys. 35, 379 (1963)Google Scholar
[2] Kullendorff, N., Jansson, L., Ledebo, L-Å., J. Appl. Phys. 54, 3203 (1983)Google Scholar
[3] Allison, H.W., Fuller, C.S., J. Appl. Phys. 36, 2519 (1965)Google Scholar
[4] Milnes, A.G., Advances in Electronics and Electron Physics 61, 63 (1983)Google Scholar
[5] Hofmann, G., Madok, J., Haegel, N.M., Roos, G., Johnson, N.M., Haller, E.E., Appl. Phys. Lett. 61, 2914 (1992)Google Scholar
[6] Egilsson, T., Gislason, H.P., and Yang, B.H., Phys. Rev. B, 50 1996 (1994)Google Scholar
[7] Sah, C.T., Forbes, L., Rosier, L.I., Tasch, H.F., Jr., Solid-State Electron. 13, 759 (1970)Google Scholar
[8] Pearton, S.J., J. Appl. Phys. 53, 4509 (1982)Google Scholar
[9] Lagowski, J., Kaminska, M., Parsey, J.M., Jr., Gatos, H.C., Lichtensteiger, M., Appl. Phys. Lett. 41, 1078 (1982)Google Scholar
[10] Dautremont-Smith, W.C., Nabity, J.C., Swaminathan, V., Stavola, M., Chevallier, J., Tu, C.W., Pearton, S.J., Appl. Phys. Lett. 49, 1098 (1986)Google Scholar
[11] Egilsson, T., Yang, B.H., Gislason, H.P., Physica Scripta T 54, 28 (1994)Google Scholar
[12] Roush, R.A., Stoudt, D.C., Mazzola, M.S., Appl. Phys. Lett. 62, 2670 (1993)Google Scholar
[13] Gislason, H.P., Egilsson, T., Leosson, K., Yang, B.H., Phys. Rev. B, 51, 9677 (1995)Google Scholar
[14] Janzén, E., Linnarsson, M., Monemar, B., Kleverman, M., Mat. Res. Soc. Sym. Proc. 163, 169 (1990)Google Scholar