Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T04:41:15.715Z Has data issue: false hasContentIssue false

Evaluation of Sputtering Deposited 2-Dimensional MoS2 Film by Raman Spectroscopy

Published online by Cambridge University Press:  04 June 2015

S. Ishihara
Affiliation:
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
K. Suda
Affiliation:
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
Y. Hibino
Affiliation:
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
N. Sawamoto
Affiliation:
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
T. Ohashi
Affiliation:
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
S. Yamaguchi
Affiliation:
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
K. Matsuura
Affiliation:
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
H. Machida
Affiliation:
Gas-phase Growth Ltd, #301 Nokodai-Tamakoganei Venture Port, 2-24-16 Naka, Koganei, Tokyo 184-0012, Japan.
M. Ishikawa
Affiliation:
Gas-phase Growth Ltd, #301 Nokodai-Tamakoganei Venture Port, 2-24-16 Naka, Koganei, Tokyo 184-0012, Japan.
H. Sudoh
Affiliation:
Gas-phase Growth Ltd, #301 Nokodai-Tamakoganei Venture Port, 2-24-16 Naka, Koganei, Tokyo 184-0012, Japan.
H. Wakabayashi
Affiliation:
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
A. Ogura
Affiliation:
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
Get access

Abstract

Molybdenum disulfide (MoS2), one of the transition-metal dichalcogenides, is a 2-dimensional semiconducting material that has a layered structure. Owing to excellent optical and electronic properties, the ultra-thin MoS2 film is expected to be used for various devices, such as transistors and flexible displays. In this study, we investigated the physical and chemical properties of sputtered-MoS2 film in the sub-10-nm region by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As the results of Raman spectroscopy investigations, we observed two Raman modes, E12g and A1g, in the 2-dimensional MoS2 films. As the thickness of the MoS2 film decreased, the peak frequency difference between E12g and A1g modes increased. From the XPS investigations, we confirmed sulfur reductions from the 2-dimensional MoS2 films. Therefore, we considered that the sulfur vacancies in the MoS2 film affected the Raman peak positions. Moreover, we performed the additional sulfurization of sputtered-MoS2 films. From the XPS and Raman investigations, the quality of the sputtered-MoS2 films was improved by the additional sulfurization.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, H., Yu, L., Lee, Y.-H., Fang, W., Hsu, A., Herring, P., Chin, M., Dubey, M., Li, L.-J., Kong, J. and Palacios, T., IEDM 88 (2012).Google Scholar
Li, Y., Xu, C.-Y., Hu, P.A. and Zhen, L., ACS nano 7 (9), 7795 (2013).CrossRefGoogle Scholar
Sundaram, R. S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A. C., Avouris, Ph. and Steiner, M., Nano Lett. 13, 1416 (2013).CrossRefGoogle Scholar
Laskar, M. R., Ma, L., Kannappan, S., Park, P. S., Krishnamoorthy, S., Nath, D. N., Lu, W., Wu, Y. and Rajan, S., Appl. Phys. Lett. 102, 252108 (2013).CrossRefGoogle Scholar
Mattheiss, L. F., Phys. Rev. Lett. 30, 784 (1973).CrossRefGoogle Scholar
Kuc, A., Zibouche, N. and Heine, T., Phys. Rev. B 83, 245213 (2011).CrossRefGoogle Scholar
Frey, G. L., Elani, S., Homyonfer, M., Feldman, Y. and Tenne, R., Phys. Rev. B 57, 6666 (1998).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A., Nature Nanotech. 6, 147 (2011).CrossRefGoogle Scholar
Stewart, T. B. and Fleischauer, P. D., Inorg. Chem. 21 (6), 2426 (1982).CrossRefGoogle Scholar
Moser, J., Lévy, F. and Bussy, F., J. Vac. Sci. Technol. A 12, 494 (1994).CrossRefGoogle Scholar
Fleischauer, P. D., Thin Solid Films 154, 309 (1987).CrossRefGoogle Scholar
Lince, J. R., J. Mater. Res. 5, 218 (1990).CrossRefGoogle Scholar
Bertrand, P. A., J. Mater. Res. 4, 180 (1989).CrossRefGoogle Scholar
Lince, J. R. and Hilton, M. R., Surf. Coat. Tech. 43, 640 (1990).CrossRefGoogle Scholar
Cong, Q., Yu, D., Wang, J., and Ou, Y. J., Thin Solid Films 209, 1 (1992).CrossRefGoogle Scholar
Moser, J. and Lrvy, F., Thin Solid Films 240, 56 (1994).CrossRefGoogle Scholar
Zhang, X., Lauwerens, W., He, J. and Celis, J.-P., J. Vac. Sci. Technol. A 21, 416 (2003).CrossRefGoogle Scholar
Ohashi, T., Suda, K., Ishihara, S., Sawamoto, N., Yamaguchi, S., Matsuura, K., Kakushima, K., Sugii, N., Nishiyama, A., Kataoka, Y., Natori, K., Tsutsui, K., Iwai, H., Ogura, A. and Wakabayashi, H., Jpn. J. Appl. Phys. 54, 04DN08 (2015).CrossRefGoogle Scholar
Jiang, J. W., Park, H. S., and Rabczuk, T., J. Appl. Phys. 114, 064307 (2013).CrossRefGoogle Scholar
Gale, J. D., J. Chem. Soc., Faraday Trans. 93, 629 (1997).CrossRefGoogle Scholar
Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A. and Baillargeat, D., Adv. Funct. Mater. 22, 1385 (2012).CrossRefGoogle Scholar
Muratore, C., Varshney, V., Gengler, J. J., Hu, J., Bultman, J. E., Roy, A. K., Farmer, B. L. and Voevodin, A. A., Phys.Chem.Chem.Phys. 16, 1008 (2014).CrossRefGoogle Scholar