Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T14:16:00.187Z Has data issue: false hasContentIssue false

Evaluation of Resistance Spot Welding Conditions Using Experimental Design

Published online by Cambridge University Press:  18 December 2012

D.Y. Medina*
Affiliation:
DCBI, UAM-A, Av. Sn Pablo 180, 02200 México D.F., México.
R. Bermejo
Affiliation:
DCBI, UAM-A, Av. Sn Pablo 180, 02200 México D.F., México.
R.T. Hernandez
Affiliation:
DCBI, UAM-A, Av. Sn Pablo 180, 02200 México D.F., México.
I. Hernandez
Affiliation:
DCBI, UAM-A, Av. Sn Pablo 180, 02200 México D.F., México.
S. Orozco
Affiliation:
Fac. de Ciencias UNAM, Av. Universidad 3000, Col. Copilco el Bajo, México D.F., México.
Get access

Abstract

The breaking strength that can withstand solder is known as resistance welding, low resistance welding will cause a failure of the weld. This study optimized the effect of the main variables in a welding steel proceess on the mechanical propierties of the steel like the resistance welding. The main variables studied were electrode, machine, post induction, and dotted pressure. The factors that have the most influence in the resistance welding are the post induction, and the combination of post induction and the raw material.The statistical model used for the evaluation process was an analysis of variance (ANOVA) in a full crossing factorial design 2k with a second order of interaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ozcelik, B., Int. Commun. Heat Mass Transfer, 38, 1067 (2011).Google Scholar
Aslanlar, S., Mater Design, 27, 125 (2006).CrossRefGoogle Scholar
Ouisse, M. and Cogan, S., Mechanical Systems and Signal Processing, 24, 1172 (2010).CrossRefGoogle Scholar
Yang, H., Zhang, Y., Lai, X., and Chen, G., Mater Design, 29, 1679 (2008).CrossRefGoogle Scholar
Zhang, Y. and Taylor, D., Finite Elements Anal. Des. 37, 1013 (2001).CrossRefGoogle Scholar
Aslanlar, S., Ogur, A., Ozsarac, U., Ilhan, E., and Demir, Z., Mater Design, 28, 2 (2007).CrossRefGoogle Scholar
Chae, S., Kwon, K., and Lee, T., Finite Elements Anal. Des. 38, 277 (2002).CrossRefGoogle Scholar
Kahraman, N., Mater Design, 28, 420 (2007).CrossRefGoogle Scholar
Li, X. C., Farson, D., and Richardson, R., J. Manuf. Syst. 19, 383 (2001).CrossRefGoogle Scholar
Salvini, P., Vivio, F., and Vullo, V., Int. J. Fatigue 22, 645 (2000).CrossRefGoogle Scholar
Harrington, P. B., Vieira, N.E., Espinoza, J., Nien, J.K., Romero, R., Yergey, A.L.. Anal. Chim. Acta, 544 (2005).Google Scholar