Skip to main content Accessibility help

Evaluation of Electrical Contact Material Stability on Mercuric Iodide*

  • A. Y. Cheng (a1)


Mercuric iodide detectors are leading candidates for room-temperature radiation detection applications. The inherently reactive nature of mercuric iodide limits the number of materials suitable for fabrication of electrical contacts. The theoretical stabilities of elemental contact materials on mercuric iodide were evaluated at 25°C. Additionally, the stabilities of transparent conductive compounds, for photodetector applications, were studied. Calculations were based on Gibbs free energy data, estimates and a series of hypothesized reactions with mercuric iodide. Leading candidate materials were identified and compared to experimental results.



Hide All

This work was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC08-88-NV10617. Note: By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive royalty-free license in and to any copyright covering this paper. Reference to a company or product name does not imply approval or recommendation of the product by the U.S. Department of Energy to the exclusion of others that may be suitable.



Hide All
1. See for example, Whited, R.C. and Schieber, M., NucI. Instr. Meth. 162, 119 (1979)
2. See for example, Smith, J.M. and Ness, H.C. Van, Introduction to Chemical Engineering Thermodynamics, 3rd Edition (McGraw-Hill Book Company, New York, 1975).
3. Karapet'yants, M.Kh. and Karapetyants, M.L.. Thermodynami Constants of Inorganic and Organic Compoundts (Humphrey Science Publishers, New York, 1970).
4. Rolsten, R.F., Iodide Metals and Metal Iodides (John Wiley & Sons, New York, 1961).
5. Quill, L.L.. Editor, Brewer, L., Bromley, L., Gilles, P.W. and Lofgren, N.L., Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, 19B (McGraw-Hill Book Company, New York, 1950).
6. Dean, J.A., Editor, Lange's Handbook of Chemistry, 13th Ed, (McGraw-Hill Book Company, New York, 1987).
7. Latimer, W.M., The Oxidation States of the Elements and Their Potentials in Aqueous Solutions. 2nd Ed. (Prentice-Hall, New Jersey, 1952).
8. Rossin, F.D., Wagman, D.D., Evans, W.H., Levine, S. and Jaffe, L., Selected Values of Chemical Thermodynmic Properties, NBS 500, (1952).
9. Chase, M.W. Jr., Davis, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A. and Syverud, A.N., JANAF Thermochemical Tables, 3rd Ed.. J. Phys. Chem. Ref. Data 14, Suppl, (1985).
10. Wagman, D.D., Evans, W.H., Parker, V.B., Schunmn, R.H., Halow, I., Bailey, S.M., Chutney, K.L. and Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units. H., J. Phys. Chem. Ref. Data, Supp2, (1982).
11. Karapet'yants, M.Kh., ZhFKh 28, 353(1954).
12. Kelley, K.K., Contributions to the Data on Theoretical Metallur: XV. A Reprnt of Bulletins 383, 384, 393 and 406, Bureau of Mines Bulletin 601, (1962).
13. Kelley, K.K., Contributions to the Data on Theoretical Metallmgy: XII. High-Temperature, Heat-Content Heat-Capacity. and Entropy Data for the Elements and Inorg. Compds., Bureau of Mines Bulletin 584, (1960).
14. Kelly, K.K. and King, E.G., Contributions to the Data on Theoretical Metallurgy: XIV. Entropies of the Elements and Inorganic Compounds, Bureau of Mines Bulletin 592, 1961).
15. Padgett, L., Baccash, C. and Berg, L. van den (private communication)
16. See, for example, James, R.B., Bao, X.J., Schlesinger, T.E., Ortale, C. and Cheng, A.Y., J. Appl. Phys. 67, 2571 (1990)
17. Bao, X.J., Schlesinger, T.E., James, R.B., Stulen, R.H., Ortale, C. and Berg, L. van den, J. Appl. Phys. 67, 7265 (1990)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed