Skip to main content Accessibility help
×
Home

Evaluation of Corrosion Rate of Steel Rebars Embedded in Mortar Mixed with Triturated Tire Particles

  • Claudia Berenice Flores Valdez (a1), Francisco G. Pérez-Gutiérrez (a2), Imelda Esparza Álvarez (a1), Orlando Guarneros García (a2) and Sandra Luz Rodríguez Reyna (a2)...

Abstract

Different materials, such as triturated waste tire (WT) particles, have been proposed as aggregate to improve mortar properties and reduce its cost in recent years. Using WT as aggregate implies material recycling, providing an environmental benefit. Previous studies show controversy on the chloride ion diffusion coefficient in mortar test specimens as a function of the WT content. The objective of this investigation is to evaluate the corrosion rate of steel reinforcement embedded in mortar specimens using WT as aggregate when exposed to chlorides. Electrochemical techniques, mercury intrusion porosimetry and scanning electron microscope were used to measure corrosion rate, porosity and microstructure of mortar matrix, respectively. Corrosion rate and porosimetry results were found to directly correlate for test pieces with 7.5% of WT compared with control samples and test pieces containing 5%, 10% of WT; such results are supported by visual inspection of steel reinforcements. Our results show that substituting 7.5% of sand with WT when preparing mortar provides the optimum protection.

Copyright

References

Hide All
Song, Y.-P., Song, L.-Y., and Zhao, G.-F., “Factors affecting corrosion and approaches for improving durability of ocean reinforced concrete structures,” Ocean Engineering, vol. 31, no. 5–6, pp. 779789, Apr. 2004.
Lu, C., Jin, W., and Liu, R., “Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures,” Corrosion Science, vol. 53, no. 4, pp. 13371347, Apr. 2011.
Angst, U., Elsener, B., Larsen, C. K., and Vennesland, Ø., “Critical chloride content in reinforced concrete — A review,” Cement and Concrete Research, vol. 39, no. 12, pp. 11221138, Dec. 2009.
Pelisser, F., Zavarise, N., Arent, T., and Michael, A., “Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition,” Journal of Cleaner Production, vol. 19, no. 6–7, pp. 757763, 2011.
Oikonomou, N. and Mavridou, S., “Cement & Concrete Composites Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires,” Cement and Concrete Composites, vol. 31, no. 6, pp. 403407, 2009.
Chiu, C.-T. and Lu, L.-C., “A laboratory study on stone matrix asphalt using ground tire rubber,” Construction and Building Materials, vol. 21, no. 5, pp. 10271033, May 2007.
Bravo, M. and De Brito, J., “Concrete made with used tyre aggregate: durability-related performance,” Journal of Cleaner Production, vol. 25, pp. 4250, 2012.
Gesoğlu, M. and Güneyisi, E., “Permeability properties of self-compacting rubberized concretes,” Construction and Building Materials, vol. 25, no. 8, pp. 33193326, Aug. 2011.
Toutanji, H. A., “The use of rubber tire particles in concrete to replace mineral aggregates,” Cement & Concrete Composites, vol. 18, no. 95, pp. 135139, 1996.
Ganjian, E., Khorami, M., and Akbar, A., “Scrap-tyre-rubber replacement for aggregate and filler in concrete,” Construction and Building Materials, vol. 23, no. 5, pp. 18281836, 2009.
IMCYC, Proporcionamiento de mezclas. México: Instituto Mexicano del Cemento y del Concreto, A.C., 1993.
S, M.. and Geary, A., “lectrochemical Polarization, a theoretical analysis of the shape of polarization curves,” Journal of the Electrochemical Society, pp. 5663, 1957.
Andrade, C. and Alonso, C., “Corrosion rate monitoring and on-site,” vol. 10, no. 5, pp. 315328, 1996.
Bravo, M., “Concrete with Incorporation of Aggregates from Grinded Used Rubber Tyres.,” Technical University of Lisbon, Lisbon, Portugal, 2009.
K., E. and Wainwright, P.., “Porosity and permeability of foamed concrete,” Cement and Concrete Research, vol. 31, no. 5, pp. 805812, May 2001.
, F. Pengpiing, Z. L., Dagen, S. and Shengnian, W., “Influence of binder composition and concrete pore structure on chloride diffusion coefficient in concrete,” Journal of Wuhan University of Technolgy, vol. Vol. 26, pp. 160164, 2011.
Rodríguez, O., Frías, M., Sánchez de Rojas, M. I., García, R., and Vigil, R, “Efecto de la adición de lodos de papel activados térmicamente en las propiedades mecánicas y de porosidad de pastas de cemento,” Materiales de Construcción, vol. 59, no. 294, pp. 4152, Apr. 2009.
Rodriguez, Sandra., “Efectos de una estracción electroquimica de cloruros sobre el concreto armado.,” Universidad Autónoma de San Luis Potosí, 2005.
Neville, A., Properties of concrete, Person Edu. USA:, 1995.
Caré, S.;, “Effect of temperature on porosity and on chloride diffusion in cement pastes,” Construction and Building Materials, vol. 22, no. 7, pp. 15601573, Jul. 2008.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed