Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-27T05:12:42.654Z Has data issue: false hasContentIssue false

Estimating Local Deposition Conditions and Kinetic Parameters Using Film Profiles

Published online by Cambridge University Press:  25 February 2011

T. S. Cale
Affiliation:
Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287–6006
M. B. Chaara
Affiliation:
Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287–6006
A. Hasper
Affiliation:
Faculty of Elect. Eng., Univ. of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Get access

Abstract

EVREST, a program which uses film profile data in features obtained from low pressure chemical vapor deposition (LPCVD) processes to estimate the local partial pressures, temperature, and kinetic parameters is demonstrated for blanket tungsten deposition by the hydrogen reduction of tungsten hexafluoride. EVREST uses EVOLVE, a physically based process simulator for ballistic transport and heterogeneous reactions in features on patterned wafers, to compute film profiles for a given set of deposition conditions and kinetic parameters. Calculated film profiles are compared with the experimental film profile and the free parameters are adjusted to minimize the sum of squared differences between points on the calculated and experimental profiles. EVREST uses Marquardt's method to determine the set of deposition parameters which provide the best calculated profile. Simulated and experimental profiles are in very good agreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cale, T. S., and Raupp, G. B., J. Vac. Sci. & Tech., B8(6), 1242 (1990).CrossRefGoogle Scholar
2. Cale, T. S., Gandy, T. H., and Raupp, G. B., in “Tungsten and Other Advanced Metals for ULSI Applications in 1990Smith, G.C. and Blumenthal, R., eds., MRS, p. 231, 1991.Google Scholar
3. Cale, T. S., Gandy, T. H., Jain, M. K., Raupp, G. B., Govil, M. and Hasper, A., in “Advanced Metallization for ULSI ApplicationsRana, V. V. S., Joshi, R. V. and Ohdomari, I., eds., MRS, p. 101, 1992.Google Scholar
4. IslamRaja, M. M., Cappelli, M. A., McVittie, J. P. and Saraswat, K. C., J. Appl. Phys., 70(11), 7137(1991).CrossRefGoogle Scholar
5. Cale, T. S., J. Vac. Sci. & Tech., B9(5), 2551(1991).Google Scholar
6. McConica, C. M., and Krishnamani, K., J. ElectroChem. Soc., 133(12), 2542 (1986).CrossRefGoogle Scholar
7. van der Putte, P., Philips J. Res., 42, 608 (1987).Google Scholar
8. Arora, R. and Pollard, R., J. ElectroChem. Soc., 138(5), 1523 (1991).CrossRefGoogle Scholar
9. Hasper, A., Holleman, J., Middelhoek, J., Kleijn, C. R. and Hoogendoorn, C. J., J. Electrochem Soc., 138(6), 1728 (1991).CrossRefGoogle Scholar
10. Cale, T. S., Raupp, G. B., Chaara, M. B. and Shemansky, F. A., submitted.Google Scholar
11. EVOLVE was developed by Cale, Timothy S. at Arizona State University and Motorola, Inc. with funding from the Semiconductor Research Corporation.Google Scholar
12. Marquardt, D. W., J. Soc. Indust. Appl. Math., 11(2), 431(1963).CrossRefGoogle Scholar