Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-28T12:01:47.050Z Has data issue: false hasContentIssue false

Ergodicity and Convergence of Fluctuations in Parrinello-Rahman Molecular Dynamics

Published online by Cambridge University Press:  01 January 1992

M. Li
Affiliation:
W. M. Keck Laboratory, 138-78, California Institute of Technology, Pasadena, California 91125 Molecular & Materials Simulation Center, Beckman Institute, 139-74, California Institute of Technology, Pasadena, California 91125
W. L. Johnson
Affiliation:
W. M. Keck Laboratory, 138-78, California Institute of Technology, Pasadena, California 91125
W. A. Goddard III
Affiliation:
Molecular & Materials Simulation Center, Beckman Institute, 139-74, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Distortion and rotation of a molecular dynamics cell used in Parrinello-Rahman molecular dynamics are found to lead to slow convergence, or nonconvergence of fluctuations from thermodynamic averages. The variations are shown to be related to nonconservation of the total angular momentum and translational symmetry variance of the dynamics. A modified equation of motion is presented which eliminates these variations. It is shown that the ergodicity is achieved in the MD ensemble generated by the new equations of motion. However, the rate of convergence is strongly affected by the choice of the MD cell mass W. Simulation results show that not all values of Wcan be used to give a desired convergence of fluctuations from thermodynamic averages in finite simulations. The fastest convergence is achieved by using the optimal cell mass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parrinello, M. and Rahman, A., Phys. Rev. Lett., 45, 1196(1980).Google Scholar
2. Parrinello, M. and Rahman, A., J. Appl. Phys., 52, 7182(1981).Google Scholar
3. Cheung, K. S., Harrison, R. J. and Yip, S., J. Appl. Phys., 71, 4009 (1992).Google Scholar
4. Nosé, S. and Klein, M. L., Phys. Rev. Lett., 50, 1207(1983).Google Scholar
5. Ray, J. R., Compt. Phys. Rep., 8, 109(1988).Google Scholar
6. Nosé, S. and Klein, M. L., Mol. Phys., 50, 1055(1983).Google Scholar
7. Li, M. and Johnson, W. L., Phy. Rev. B46, 5237(1992).Google Scholar
8. Sprik, M., Impey, R. and Klein, M. L., Phys. Rev. B29, 4368(1984).Google Scholar
9. Andersen, H. C., J. Chem. Phys., 72, 2384(1980).Google Scholar
10. Li, M., Johnson, W. L. and Goddard, W. A. III, (unpublished).Google Scholar
11. Ray, J. R. and Rahman, A., J. Chem. Phys., 80, 4423(1984); Ray, J. R., J. Chem. Phys., 79, 5128(1983).Google Scholar
12. Cleveland, C., J. Chem. Phys., 89, 4987(1988).Google Scholar