Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T04:10:45.169Z Has data issue: false hasContentIssue false

Er-Doped Porous Silicon Led For Integrated Optoelectronics

Published online by Cambridge University Press:  10 February 2011

L. Tsybeskov
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY;
G. F. Grom
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY;
K. D. Hirschman
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY;
H. A. Lopez
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY;
S. Chan
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY;
P. M. Fauchet
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY;
V. P. Bondarenko
Affiliation:
Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus.
Get access

Abstract

Porous silicon (PSi) was doped by Er using electromigration from a solution and converted to Er-doped silicon-rich silicon oxide (SRSO:Er) by partial thermal oxidation at 600–950°C following densification at 1100°C in an inert atmosphere. Room-temperature photoluminescence (PL) at ∼1.5 μm is intense and decreases by less than 20% from 12 K to 300 K. The PL spectrum of SRSO:Er reveals no luminescence bands related to Si-bandedgerecombination, point defects or dislocations, and shows that the Er3+ centers are the most efficient radiative recombination centers. A light-emitting diode (LED) with an active layer made of SRSO:Er was manufactured using a pre-oxidation cleaning step to increase the quality of the interface between SRSO:Er and the top electrode. Room temperature electroluminescence at ∼1.5 μm was demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Michel, J., Benton, J. L., Rerrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y.-H., Poate, J. M., and Kimmerling, L. C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
3. Lombardo, S., Campisano, S. U., van den Hoven, G. N., Cacciato, A. and Polman, A., Appl. Phys. Lett. 63, 1942 (1993).Google Scholar
4. Bresler, M. S., Gusev, O. B., Kudoyarova, V. Kh., Kuznetsov, A. N., Pak, P. E., Terukov, E. I., Yassievich, I. N., Zakharchenya, B. P., Fuhs, W. and Sturm, A., Appl. Phys. Lett. 67, 3599 (1995).Google Scholar
5. Namavar, F., Lu, F., Perry, C. H., Gremins, A., Kalkhoran, N. M., Daly, J. T. and Soref, R. A., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Koch, F. and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 375.Google Scholar
6. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Sato, A., Appl. Phys. Lett. 65, 983 (1994).Google Scholar
7. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
8. Fauchet, P. M., J. Luminescence 70, 294 (1996).Google Scholar
9. Shin, J. H., van den Hoven, G. N., and Polman, A., Appl. Phys. Lett. 66, 2379 (1995).Google Scholar
10. Tsybeskov, L., Moore, K. L., Hall, D. G. and Fauchet., P. M. Appl. Phys. Lett. 70, 1790 (1997).Google Scholar
11. Campbell, I. H. and Fauchet, P. M., Solid State Commun. 58, 739 (1986).Google Scholar
12. Bondarenko, V. P., unpublished.Google Scholar
13. Franzo, G., Priolo, F., Coffa, S., Polman, A., Camera, A., Appl. Phys. Lett. 64, 2235 (1994).Google Scholar
14. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C. and Poate, J. M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
15. Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M. and Citrin, P. H., Appl. Phys. Lett. 61, 2181 (1992).Google Scholar
16. Tsybeskov, L., Duttagupta, S. P., Hirschman, K. D. and Fauchet, P. M., in Advanced Luminescent Materials, edited by Lockwood, D. J., Fauchet, P. M., Koshida, N. and Brueck, S. R. J. (Electrochemical Society, Pennington, NJ) 1996, 3447.Google Scholar
17. Isshiki, H., Kobayashi, H., Yugo, S., Kimura, T. and Ikoma, T., Appl. Phys. Lett. 58, 484 (1991).Google Scholar
18. Tsybeskov, L., Hirschman, K. D., Duttagupta, S. P., Fauchet, P. M., Zacharias, M., Kohlert, P., McCaffrey, J. P. and Lockwood, D. J., in Quantum Confinement IV.: Nanoscale Materials, Devices, and Systems, edited by Cahay, M., Leburton, J.-P., Lockwood, D.J., and Bandyopadhyay, S. (The Electrochemical Society, Pennington, NJ), 1997, pp 134145.Google Scholar