Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T18:11:36.305Z Has data issue: false hasContentIssue false

Erbium Doped Silicon for Light Emitting Devices

Published online by Cambridge University Press:  10 February 2011

J. Michel
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA 02139, jurgen@jurgen.mit.edu
B. Zheng
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA 02139, jurgen@jurgen.mit.edu
J. Palm
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA 02139, jurgen@jurgen.mit.edu
E. Ouellette
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA 02139, jurgen@jurgen.mit.edu
F. Gan
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA 02139, jurgen@jurgen.mit.edu
L. C. Kimerling
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA 02139, jurgen@jurgen.mit.edu
Get access

Abstract

We report on the excitation and de-excitation processes of erbium implanted in silicon and the integration of Si:Er light emitting devices (LED) with standard CMOS technology. We find two deexcitation processes, an Auger process below 100 K and a phonon mediated energy backtransfer above 100 K. We present the first optical voice link with a silicon LED as the emitter. Optical transmission system performance with our LED is possible below 200 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
[2] Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70, 2672 (1991)Google Scholar
[3] Favennec, P.N., L'Haridon, H., Moutennet, D., Salvi, M., and Gauneau, M., Jpn. J. Appl. Phys. 29, L524 (1990)Google Scholar
[4] Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C. and Poate, J.M., Appl. Phys. Lett. 64, 2842 (1994)Google Scholar
[5] Franzb, G., Priolo, F., Coffa, S., Polman, A., and Camera, A., Appl. Phys. Lett. 64, 2235 (1994)Google Scholar
[6] Yassievich, I.N. and Kimerling, L.C., Semicond. Sci. Technol. 7, 1 (1993)Google Scholar
[7] Morse, M., Zheng, B., Palm, J., Duan, X., and Kimerling, L.C., this volumeGoogle Scholar
[8] Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L.C., Phys. Rev. B, in pressGoogle Scholar
[9] Palm, J., to be publishedGoogle Scholar
[10] Libertino, S., Coffa, S., Franzò, G., and Priolo, F., J. Appl. Phys. 78, 3867 (1995)Google Scholar
[11] Taguchi, A., Takahei, K., and Nakata, J., Mat. Res. Soc, Symp. Proc. Vol.301, 139 (1993)Google Scholar