Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T13:29:06.308Z Has data issue: false hasContentIssue false

Epitaxy and Nucleation in Cu and Ag Doped Amorphous Si

Published online by Cambridge University Press:  26 February 2011

J. S. Custer
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 FOM Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
Michael O. Thompson
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
D. J. Eaglesham
Affiliation:
T Bell Laboratories, Murray Hill, NJ 07974
D. C. Jacobson
Affiliation:
T Bell Laboratories, Murray Hill, NJ 07974
J. M. Poate
Affiliation:
T Bell Laboratories, Murray Hill, NJ 07974
J. R. Liefting
Affiliation:
FOM Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
F. W. Saris
Affiliation:
FOM Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
Get access

Abstract

The competition between solid phase epitaxy and random nucleation during thermal annealing of amorphous Si implanted with the fast diffusers Cu and Ag has been studied. For low concentrations of these impurities, solid phase epitaxy proceeds with small deviations from the intrinsic rate and with the impurity remaining in the shrinking amorphous layer. At a critical metal concentration in the amorphous layer of ∼ 0.12 at.% rapid random nucleation occurs, halting epitaxy and transforming the remaining amorphous material to polycrystalline Si via grain growth. The nucleation rate is at least 8 orders of magnitude greater than the intrinsic homogeneous rate. At higher Cu concentrations nucleation is observed below the temperature needed for epitaxy (400°C). This nucleation, clearly caused by the presence of Cu or Ag in the layer, may be induced by the impurities exceeding the absolute stability concentration and starting to phase separate, leading to enhanced crystal Si nucleation in the metal rich regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Csepregi, L., Mayer, J. W., and Sigmon, T. W., Physics Letters 54A, 157 (1975).CrossRefGoogle Scholar
2. Olson, G. L. and Roth, J. A., Mat. Sci. Reports 3, 3 (1988).Google Scholar
3. Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).CrossRefGoogle Scholar
4. Kennedy, E. F., Csepregi, L., Mayer, J. W., and Simon, T. W., J. Appl. Phys. 48, 4241 (1977).Google Scholar
5. Revesz, P., Wittmer, M., Roth, J., and Mayer, J. W., J. Appl. Phys. 49, 5199 (1978), M. Wittmer, J. Roth, P. Revesz, and J. W. Mayer, J. Appl. Phys. 49, 5207 (1978).Google Scholar
6. Roth, J. A. and Olson, G. L., Mat. Res. Soc. Symp. Proc. 74, 319 (1987).Google Scholar
7. Poate, J. M., Jacobson, D. C., Williams, J. S., Elliman, R. G., and Boerma, D. O., Nucl. Instr. and Meth. B19/20, 480 (1987).Google Scholar
8. Trumbore, F. A., Bell Syst. Tech. Journal, 39, 205 (1960).Google Scholar
9. Jacobson, D. C., Poate, J. M., and Olson, G. L., Appl. Phys. Lett. 40, 118 (1986).CrossRefGoogle Scholar
10. Jacobson, D. C., Elliman, R. G., Gibson, J. M., Olson, G. L., Poate, J. M., and Williams, J. S., Mat. Res. Soc. Symp. Proc. 74, 327 (1987).CrossRefGoogle Scholar
11. Elliman, R. G., Gibson, J. M., Jacobson, D. C., Poate, J. M., and Williams, J. S., Appl. Phys. Lett. 46, 478 (1985).CrossRefGoogle Scholar
12. Baeri, P., Campisano, S. U., Ferla, G., and Rimini, E., Phys. Rev. Lett. 41, 1246 (1978).CrossRefGoogle Scholar
13. Campisano, S. U., Ferla, G., Baeri, P., Grimaldi, M. G., and Rimini, E., Appl. Phys. Lett. 37, 719 (1980).Google Scholar
14. Herd, S. R., Chaudhari, P., and Brodsky, M. H., J. Non-Cryst. Solids 7, 309 (1972).Google Scholar
15. Roorda, S. and Sinke, W. C., Appl. Surf. Sci. 36, 588 (1989).Google Scholar
16. Iverson, R. B. and Reif, R., J. Appl. Phys. 62, 1675 (1987).Google Scholar
17. Spaepen, F., Acta. Met. 26, 1167 (1978), F. Spaepen and D. Turnbull, AIP Conf. Ser. 50, 73 (1979).Google Scholar
18. Williams, J. S. and Elliman, R. G., Phys. Rev. Lett. 61, 1069 (1983).Google Scholar
19. Donovan, E. P., Spaepen, F., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 55, 1516 (1989).Google Scholar
20. Binary Alloy Phase Diagrams, ed. Massalski, Thaddeus B. (American Society for Metals, Metals Park, Ohio, 1986).Google Scholar
21. Shewmon, P.J., Transformations in Metals, (J. Willimas Book Co., Jenks, Oklahoma, 1983), pp. 289–93.Google Scholar