Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-05T07:10:09.849Z Has data issue: false hasContentIssue false

Epitaxial TiSi2 Growth on Si(100) from Reactive Sputtered TiNxand Subsequent Annealing

Published online by Cambridge University Press:  21 February 2011

Jeong S. Byun
Affiliation:
Semiconductor Research Laboratory Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong-Dong Cheongju-Si, 360–480, Korea
Kwan G. Rha
Affiliation:
Semiconductor Research Laboratory Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong-Dong Cheongju-Si, 360–480, Korea
Woo S. Kim
Affiliation:
Semiconductor Research Laboratory Lab., GoldStar Electron Co. Ltd., 50 Hyangjeong-Dong Cheongju-Si, 360–480, Korea
Get access

Abstract

In this paper, we present the microstructural evolution of silicide phase with TiNxSi structure. The nitrogen atoms in the TiNx film limites the available Ti atoms that react with Si substrate to form silicide. Hence, the thickness of Ti-Si amorphous interlayer (a-interlayer) was much thinner in comparison with that from pure Ti film after annealing (RTA) at 500°C. Upon RTA at above 600°C, at first thin epitaxial C49-TiSi2 was formed with an extremely uniform thickness on Si(100) substrate. Also the stable character of the epitaxial C49-TiSi2 supress the structure transformation of TiSi2 from C49 to C54.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zaima, S. and Yasuda, Y., Jpn. Soc. Appl. Phys., 63, 1093 (1994)Google Scholar
[2] Liauh, H.R., Chen, M.C., Chen, J.F., and Chen, L.J., J. Appl. Phys. 74, 15 (1993)Google Scholar
[3] Liauh, H.R., Chen, M.C., Chen, J.F., and Chen, L.J., Appl. Phys. Lett. 61, 2167 (1992)Google Scholar
[4] Tu, K.N. and Mayer, J.W., in Thin Film-Interdiffusion and Reactions, ed. Poate, J.M., Tu, K.N., and Mayer, J.W. (Wiley & Sons, NY, 1978) p. 359 Google Scholar
[5] Yoshoda, T., Kawahara, H., and Ogawa, S.I., Symp. IEEE Int. Rel. Phys. Symp., (1991) pp. 344348 Google Scholar
[6] Tung, R.T., Phys. Rev. Lett., 52, 461 (1984)Google Scholar
[7] Chen, L.J. and Tu, K.N., Mater. Sci. Rep. 6, 53 (1991)Google Scholar
[8] Hsia, S.L., Tan, T.Y., Smith, P., and McGuire, G.E., J. Appl. Phys., 72, 1864 (1992)Google Scholar
[9] Cheng, J.Y. and Chen, L.J., J. Appl. Phys. 69, 2161 (1991)Google Scholar
[10] Chen, L.J., Hsieh, W.Y., Lin, J.H., Lee, T.L., Chen, J.F., Liang, J.M., and Wang, M.H., Mat. Res. Soc. Symp. Proc. 320, 343 (1994)Google Scholar
[11] Lakshmikumar, S.T. and Rastogi, A.C., J. Vac. Sci. Technol. B7, 604 (1989)Google Scholar
[12] Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985)Google Scholar
[13] Pretorius, R., Mat. Res. Soc. Symp. Proc. 25, 15 (1984)Google Scholar
[14] Bene, R.W., J. Appl. Phys. 61, 1826 (1983)Google Scholar
[15] Rónay, M., Appl. Phys. Lett. 42, 577 (1983)Google Scholar