Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T01:03:37.237Z Has data issue: false hasContentIssue false

Epitaxial Growth of Strontium Bismuth Tantalate/Niobate on Buffered Magnesium Oxide Substrates

Published online by Cambridge University Press:  26 February 2011

George H. Thomas
Affiliation:
Deparment of Chemistry, University of Tennessee, Knoxville TN 37919USA
Jonathan S. Morrell
Affiliation:
Y-12 National Security Complex, Oak Ridge, TN 37831USA
Tolga Aytug
Affiliation:
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6119, USA
Ziling B. Xue
Affiliation:
Deparment of Chemistry, University of Tennessee, Knoxville TN 37919USA
David B. Beach
Affiliation:
beachdb@ornl.gov, Oak Ridge National Lab, Chemical Sciences, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6119, United States, 865-574-5024
Get access

Abstract

Epitaxial films of strontium bismuth tantalate (SrBi2Ta2O9, SBT) and strontium bismuth niobate (SrBi2Nb2O9, SBN) were grown using solution deposition techniques on magnesium oxide (MgO) substrates buffered with a 100 nm layer of lanthanum manganate (LaMnO3, LMO). Film structure and texture analyses were carried out using x-ray diffraction. Theta-2theta diffraction patterns were consistent with a c-axis aligned structure for both the buffer layer and the solution deposited films. Theta-2 theta scans revealed (001)SBT, SBN //(001) LMO epitaxial relationships between the solution deposited films and the buffer layer. A pole figure about the SBT, SBN (115) reflection indicated a single in-plane epitaxy. Film quality was assessed using ω and φ scans. Nuclear Magnetic Resonance (13C) was used to characterized the methoxy-ethoxide solutions used for the deposition of the SBN and SBT films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Aurivillius, B., Archiv. for Kemi. 1, 463 (1949).Google Scholar
2 Scott, J. F., Arajo, C. A. Science 246, 1400 (1989).Google Scholar
3 Rentshler, T., Mater. Res. Bull. 32, 351 (1997).Google Scholar
4 Zhu, J., Singh, S. K., Thomas, P. A., Palmer, S. B. Cryst. Res. Technol. 34, 1205 (1999).Google Scholar
5 Gensbittel, A., Degardin, A. F., Kreisler, A. J., Guilloux-Viry, M., Perrin, A., Crozat, P. Ferroelectrics, 288, 103 (2003).Google Scholar
6 Beach, D. B., Morrell, J. S., Xue, Z. B., Specht, E. D., Integrated Ferroelectrics 28, 29 (2000).Google Scholar
7 Morrell, J. S.; Xue, Z.; Specht, E. D.; Beach, D. B., Materials Research Society Proceedings 495, 271 (1998).Google Scholar
8 Lange, F. Science 273, 903 (1996).Google Scholar
9 Aytug, T. Paranthaman, M. Kang, S. Zhai, H. Y. Leonard, K. J. Vallet, C. E. Sathyamurthy, S. Christen, H. M. Goyal, A., and Christen, D. K., IEEE T. Appl. Supercon. 13(2), 2661 (2003).Google Scholar
10 Massiani, M.C., Papiernik, R., Hubert-Plazgraf, L. G., Daran, J. C. Polyhedron 10, 437 (1991).Google Scholar
11 Kato, K. Zheng, C. Finder, J. M. Dey, S. K., and Torii, Y. J. Amer. Ceram. Soc. 81, 1869 (1998).Google Scholar