Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-09T01:59:17.684Z Has data issue: false hasContentIssue false

Epitaxial Growth of Eute on Pbte (111) Influenced by Strain-Induced Coherent 3D Islanding

Published online by Cambridge University Press:  15 February 2011

G. Springholz
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität Linz, A - 4040 Linz, Austria.
G. Bauer
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität Linz, A - 4040 Linz, Austria.
K. Schilcher
Affiliation:
Institut für Biophysik, Johannes Kepler Universität Linz, A- 4040 Linz, Austria.
Get access

Abstract

EuTe on PbTe is an example of a strained layer heteroepitaxial system with a moderate lattice-Mismatch of 2%. Using reflection high-energy electron diffraction (RHEED), the phase diagram of heteroepitaxial growth of EuTe on PbTe (111) by molecular beam epitaxy was established, indicating that only in a narrow regime of growth conditions does two dimensional layer-by-layer growth occur. Using in situ RHEED, combined with ex situ atomic force Microscopy, the evolution of the surface morphology during heteroepitaxial growth was investigated. It is found that at the critical layer thickness an abrupt surface roughening occurs. Studying the dependence of this surface roughening transition on substrate temperature and on the Eu-to-Te2 beam flux ratio used for growth, the critical layer thickness is found to decrease strongly as the surface kinetics are enhanced, even if the substrate temperature is kept constant. These results indicate that the surface roughening is driven only by the surface kinetics, which strongly supports the model of strain relaxation by coherent three dimensional islanding.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. see e.g.: Whaley, G. J. and Cohen, P. I., Appl. Phys. Lett. 57, 144 (1990),CrossRefGoogle Scholar
Ekenstedt, M. J., Andersson, T. G., Wang, S. M., Phys. Rev. B 48, 5289 (1993).Google Scholar
2. see e.g.: Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahura, S., and Robinson, I. K., J. Vac. Sci. Technol. A 2, 436 (1984), andGoogle Scholar
Eaglesham, D. J. and Cernilo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
3. Berger, P. R., Chang, K., Bhattacharya, P., Singh, J. and Bajaj, K. K., Appl. Phys. Lett. 58, 684 (1988).CrossRefGoogle Scholar
4. Snyder, C. W., Orr, B. G., Kessler, D. and Sander, L. M., Phys. Rev. Lett. 66, 3032 (1991).Google Scholar
5. Snyder, C.W., Mansfield, J.F., and Orr, B.G., Phys. Rev. B 46, 9551 (1992).CrossRefGoogle Scholar
6. Chen, J. J., Wang, Z. H., Dresselhaus, M. S., Dresselhaus, G., Springholz, G., and Bauer, G.,. Solid State Electronics (1994), in print.Google Scholar
7. Springholz, G., Yuan, Shu, Bauer, G., Kriechbaum, M., and Krenn, H., Mat. Res. Soc. Sym. Proc. Vol.301, 353 (1993).Google Scholar
8. Springholz, G., Bauer, G. and Ihninger, G., Cryst, J.. Growth 127, 302 (1993).Google Scholar
9. Frank, N., Springholz, G., and Bauer, G., Mat. Res. Soc. Sym. Proc. (1994), this Volume.Google Scholar
10. Springholz, G. and Bauer, G., Appl. Phys. Lett. 62, 2399 (1993).Google Scholar
11. Springholz, G. and Bauer, G., Phys. Rev. B 48 (1993).CrossRefGoogle Scholar
12. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
13. Price, G. L., Phys. Rev. Lett. 66, 469 (1990).Google Scholar