Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T11:10:53.393Z Has data issue: false hasContentIssue false

Epitaxial Growth of Diamond on an Iridium (100) Substrate by Microwave Plasma-Assisted Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

Toshiki Tsubota
Affiliation:
Department of Materials Physics and Chemistry
Shigenori Tsuruga
Affiliation:
Department of Materials Physics and Chemistry
Takeyasu Saito
Affiliation:
Department of Materials Physics and Chemistry
Katsuki Kusakabe
Affiliation:
Department of Materials Physics and Chemistry
Shigeharu Morooka
Affiliation:
Department of Materials Physics and Chemistry
Hideaki Maeda
Affiliation:
Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812- 8581, Japan, tsubota@cstf.kyushu-u.ac.jp
Get access

Abstract

Diamond films were grown heteroepitaxially on iridium (100) substrates by microwave plasma-assisted chemical vapor deposition (MPCVD) using methane gas as the carbon source. The iridium substrate, which was formed on a MgO (100) substrate by means of sputtering at 850 °C, was treated by imposing a negative bias between -150 and -200 V for 15 min. Methane concentration and substrate temperature were maintained at 3° and 650–740 °c, respectively. At a substrate temperature of 740 °C, diamond particles were formed at a population density of (0.15- 1.5)x108 cm-2, and most of them were oriented to MgO (100). After a further reaction for 1 h under conditions which were optimized for diamond growth, the oriented diamond particles were coalesced, and islands of (100) diamond were formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 60, p.698 (1992).Google Scholar
2. Jiang, X., Klages, C.-P., Zachai, R., Hartweg, H., and Fusser, H.-J., Appl. Phys. Lett. 62, p. 3438 (1993).Google Scholar
3. Wild, C., Koidl, P., Muller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., and Brenn, R., Diamond Relat. Mater., 2, p.158 (1993).Google Scholar
4. Maeda, H., Irie, M., Hino, T., Kusakabe, K., and Morooka, S., J. Mater. Res., 10, p.158 (1995).Google Scholar
5. Kawarada, H. and Suesada, T., Appl. Phys. Lett., 66, p.583 (1995).Google Scholar
6. Stoner, B.R., Kao, C.-T., Malta, D.M., and Glass, R.C., Appl. Phys. Lett., 62, p.2347 (1993).Google Scholar
7. Saito, T., Ohtsubo, K., Tsuruga, S., Kameta, M., Maeda, H., Kusakabe, K., and Morooka, S., in Proc. 5th Int. Symp. on Diamond Mater., (Electrochemical Society Proc. 97–32, Pennington, 1998), p.88.Google Scholar
8. Zhu, W., Yang, P.C., and Glass, J.T., Appl. Phys. Lett., 63, p.1640(1993).Google Scholar
9. Yang, P.C., Schlesser, R., Wolden, C.A., Liu, W., Davis, R.F., Sitar, Z., and Prater, J.T., Appl. Phys. Lett., 70, p.2960 (1997).Google Scholar
10. Liu, W., Tucker, D.A., Yang, P., and Glass, J.T., J. Appl. Phys., 78, p. 1291 (1995).Google Scholar
11. Tachibana, T., Yokota, Y., Nishimura, K., Miyata, K., Kobashi, K., and Shintani, Y., Diamond Relat. Mater., 5, p.197 (1996).Google Scholar
12. Tachibana, T., Yokota, Y., Miyata, K., Kobashi, K., and Shintani, Y., Diamond Relat. Mater., 6, p.266 (1997).Google Scholar
13. Koizumi, S., Murakami, T., Inuzuka, T., and Suzuki, K., Appl. Phys. Lett., 57, p.563 (1990).Google Scholar
14. Wang, L., Pirouz, P., Argoitia, A., Ma, J.S., and Angus, J.C., Appl. Phys. Lett., 63, p. 1336 (1993).Google Scholar
15. Tomikawa, T. and Shikata, S., Jpn. J. Appl. Phys., 32, p. 3938 (1993).Google Scholar
16. Maeda, H., Masuda, S., Kusakabe, K., and Morooka, S., Diamond Relat. Mater., 3, p.398 (1994).Google Scholar
17. Ohtsuka, K., Suzuki, K., Sawabe, A., and Inuzuka, T., Jpn. J. Appl. Phys., 35, p.L1072 (1996).Google Scholar
18. Ohtsuka, K., Fukuda, H., Suzuki, K., and Sawabe, A., Jpn. J. Appl. Phys., 36, p. L1214 (1997).Google Scholar
19. Sawabe, A., Fukuda, H., Electron. Commun. in Jpn. Part 2: Electronics, 81, p.28 (1998).Google Scholar
20. Robertson, J., Gerber, J., Sattel, S., Weiler, M., Jung, K., and Ehrhardt, H., Appl. Phys. Lett., 66, p.3287 (1995).Google Scholar
21. Maeda, H., Irie, M., Hino., T. Kusakabe, K., and Morooka, S., Diamond Relat. Mater., 3, p.1072 (1994).Google Scholar