Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T20:09:52.584Z Has data issue: false hasContentIssue false

Epitaxial Growth of CuAu–Ordered CuInSe2 Structural Polytypes by Migration Enhanced Epitaxy

Published online by Cambridge University Press:  10 February 2011

B. J. Stanbery
Affiliation:
Dept. of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611
C.-H. Chang
Affiliation:
Dept. of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611
S. Kim
Affiliation:
Dept. of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611
S. Kincal
Affiliation:
Dept. of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611
G. Lippold
Affiliation:
Institute for Surface Modification, Leipzig, Germany
S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, Golden, CO
L. Li
Affiliation:
Dept. of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611
T. J. Anderson
Affiliation:
Dept. of Chemical Engineering, University of Florida, P.O. Box 116005, Gainesville, FL 32611
M. M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, Golden, CO
Get access

Abstract

Migration-Enhanced Epitaxy (MEE) has been successfully employed to grow epitaxial films of the ternary compound CuInSe2 on (001) GaAs that are ordered in a CuAu crystallographic structure rather than the compound's equilibrium chalcopyrite structure. Evidence for this structural polytype is provided by XRD, TEM–TED, and Raman scattering data. Film growth under the conditions employed for this study occurs in a Stranski-Krastanov mode. The effects of growth system parameters and overall stoichiometry on 3–D island formation are described, including our observation that ordering of those islands into quasiperiodic self-assembled arrays occurs only in the case of nonstoichiometric copper excess.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: 1101 S. Capitol of Texas Hwy., Suite 100F, Austin, TX 78746-6490.

Current address: Oregon State University, Dept. of Chem. Eng., Corvallis, OR 97330.

References

REFERENCES

1.Benner, J.P. and Kazmerski, L., in IEEE Spectrum (1999), Vol.36, pp. 34.Google Scholar
2.Rockett, A., Abou-Elfotouh, F., Albin, D., Bode, M., Ermer, J., Klenk, R., Lommasson, T., Russell, T.W.F., Tomlinson, R.D., Tuttle, J., Stolt, L., Walter, T. and Peterson, T.M., Thin Solid Films 237, 1 (1994).Google Scholar
3.Haalboom, T., Gödecke, T., Ernst, F., Rühle, M., Herbholz, R., Schock, H.W., Beilharz, C. and Benz, K.W., in Ternary and Multinary Compounds, Proceedings of the 11th International Conference, edited by R.D., Tomlinson, A.E., Hill, and R.D., Pilkington, (Institute of Physics Conference Series 152, 1998), pp. 249.Google Scholar
4.Chang, C.-H., Davydov, A., Stanbery, B.J. and Anderson, T.J., in The Conference Record of the 25th IEEE Photovoltaic Specialists Conference, pp. 849.Google Scholar
5.Bode, M.H., J. Appl. Phys. 76 (1), 159 (1994).Google Scholar
6.Wada, T., Kohara, N., Negami, T. and Nishitani, M., J. Mater. Res. 12, 1456 (1997).Google Scholar
7.Fons, P., Niki, S., Yamanda, A. and Oyanagi, H., J. Appl. Phys. 84 (12), 6926 (1998).Google Scholar
8.Wei, S.-H., Ferreira, L.G. and Zunger, A., Phys. Rev. B 45 (5), 2533 (1992).Google Scholar
9.Su, D.S., Neumann, W., Hunger, R., Giersig, M., Lux-Steiner, M.C. and Lewerenz, H.J., in Ternary and Multinary Compounds, Proceedings of the 11th International Conference, edited by Tomlinson, R.D., Hill, A.E., and Pilkington, R.D., (Institute of Physics Conference Series 152, 1998), pp. 229.Google Scholar
10.Su, D.S., Neumann, W., Hunger, R., Schubert-Bischoff, P., Giersig, M., Lewerenz, H.J., Scheer, R. and Zeitler, E., Appl. Phys. Lett. 73 (6), 785 (1998).Google Scholar
11.Horikoshi, Y., Kawashima, M. and Yamahuchi, Y., Jap. J. Appl. Phys. 25, L868 (1986).Google Scholar
12.Herman, M.A. and Sitter, H., Molecular Beam Epitaxy: Fundamentals and Current Status (Springer-Verlag, Berlin, 1989), §6.4.4.Google Scholar
13.Suri, D., Nagpal, K. and Chadha, G., J. Appl. Crystallogr. 22, 578 (1989).Google Scholar
14.Yakushev, M.V., Lippold, G., Hill, A.E., Pilkington, R.D. and Tomlinson, R.D., Crys. Res. & Tech. 31, 357 (1996).Google Scholar
15.Tiwari, A.N., Blunier, S., Filzmoser, M., Zogg, H., Schmid, D. and Schock, H.W., Appl. Phys. Lett. 65 (26), 3347 (1994).Google Scholar
16.Nelson, A.J., Homer, G.S., Sinha, K. and Bode, M.H., Appl. Phys. Lett. 64 (26), 3600 (1994).Google Scholar
17.Wei, S.-H., Zhang, S.B. and Zunger, A., Phys. Rev. B 59 (4), R2478 (1999).Google Scholar