Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T12:00:11.808Z Has data issue: false hasContentIssue false

Epitaxial Ferromagnetic MnGa and (MnNi) Ga Thin Films with Perpendicular Magnetization on GaAs

Published online by Cambridge University Press:  03 September 2012

M. Tanaka
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
J.P. Harbison
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
T.D. Sands
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
B.A. Philips
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
J. De Boeck
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
T.L. Cheeks
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
L.T. Florez
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
V.G. Keramidas
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040.
Get access

Abstract

We have successfully grown thermodynamically stable ferromagnetic MnxGa1-x (x=0.55∼0.60) thin films with thicknesses ranging from 3 nm to 60 nm on GaAs substrates by molecular beam epitaxy. The c-axis of the tetragonal structure of the MnGa film is shown to be aligned perpendicular to the substrate. Both Magnetization Measurements and extraordinary Hall effect measurements indicate perpendicular magnetization of the MnGa films, exhibiting squarelike hysteresis characteristics. Furthermore, we have investigated the effect of Ni additions as a substitution for mn in (Mn60-yNiy) Ga40 alloy thin films with y=0 – 30 at% Ni. With increasing Ni, the perpendicular component of the magnetization becomes smaller up to y=18 where the magnetization is in-plane. At y=30, the magnetization is again perpendicular.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prinz, G.A., Science 250, 1092 (1990).Google Scholar
2. Krebs, J.J., Appl. Phys. A 49, 513 (1989).Google Scholar
3. Sands, T., Harbison, J.P., Leadbeater, M.L., Allen, S.J. Jr, Hull, G.W., Ramesh, R., and Keramidas, V.G., Appl. Phys. Lett. 57, 2609 (1990).Google Scholar
4. Harbison, J.P., Sands, T., Ramesh, R., Florez, L.T., Wilkens, B.J., and Keramidas, V.G., J. Crystal Growth 111, 978 (1991).Google Scholar
5. Bither, T.A. and Cloud, W.H., J. Appl. Phys. 36, 1501 (1965).Google Scholar
6. Hasegawa, M. and Tsuboya, I., Review of Electrical Communication Laboratory 16, 605 (1968) and references therein.Google Scholar
7. Tanaka, M., Harbison, J.P., DeBoeck, J., Sands, T., Philips, B., Cheeks, T.L., Keramidas, V.G., Appl. Phys. Lett. 62, 1565 (1993).Google Scholar
8. Krishnan, K.M., Appl. Phys. Lett. 61, 2365 (1992).Google Scholar
9. Harbison, J.P., Sands, T., DeBoeck, J., Cheeks, T.L., Miceli, P., Tanaka, M., Florez, L.T., Wilkens, B.J., Gilchrist, H.L. and Keramidas, V.G., J. Crystal Growth, in press.Google Scholar
10. Sands, T., DeBoeck, J., Harbison, J.P., Scherer, A., Gilchrist, H.L., Cheeks, T.L., Miceli, P.F., Ramesh, R. and Keramidas, V.G., J. Appl. Phys., in press.Google Scholar
11. Dahlberg, E.D., Riggs, K. and Prinz, G.A., J. Appl. Phys. 63, 4270 (1988).Google Scholar