Skip to main content Accessibility help

Enzymes and Cells Confined in Silica Nanopores

  • Jacques Livage (a1), Cécile Roux (a1), Thibaud Coradin (a1), Souad Fennouh (a1), Stéphanie Guyon (a1), Laurie Bergogné (a1), Anne Coiffier (a2) and Odile Bouvet (a1)...


The sol-gel process opens new possibilities in the field of biotechnologies. Sol-gel glasses are formed at room temperature via the polymerization of molecular precursors. Enzymes can be added to the solution of precursors and trapped within the growing silica network. Small substrate molecules can diffuse through the pores allowing reactions to be performed in-situ, within the silica gels. Enzyme are encased by the hydrated silica in a cage tailored to their size, they retain their biocatalytic activity and may even be stabilized within the sol-gel matrix.

Whole cell bacteria have also been immobilized within sol-gel glasses. They behave as a "bag of enzymes" and their membrane protects enzymes against denaturation and leaching. The cellular organization of bacteria cells is preserved upon encapsulation. Experiments performed with Escherichia coli induced to β-galactosidase show that they still exhibit noticeable enzymatic activity. Some degradation of the cell walls may even occur increasing the “measured” activity. However silica gels made from aqueous precursors seem to prevent bacteria from natural degradation upon ageing.

Antibody-antigen recognition has been shown to be feasible within sol-gel matrices. Trapped antibodies bind specifically the corresponding haptens and can be used for the detection of traces of chemicals. Even whole cell protozoa have been encapsulated without any alteration of their cellular organization. For medical applications, trapped parasitic protozoa have been used as antigens for blood tests with human sera. Antigen-antibody interactions were followed by the so-called Enzyme Linked ImmunoSorbent Assays (ELISA).



Hide All
1. Weetall, H., Trends in Biotechnology, 3, 276 (1985).
2. Avnir, D., Braun, S., Lev, O., Ottolenghi, M., Chem. Mater., 6, 1605 (1994).
3. Dave, C., Dunn, B., Valentine, J.S., Zink, J.I., Anal. Chem., 66, 1120A (1994).
4. Livage, J., C.R Acad. Sci. Paris, 322, 417 (1996).
5. Brinker, C.J., Scherer, G.W., Sol-Gel Science, (Academic press, 1990).
6. Iler, R. K., the Chemistry of Silica, (John Wiley, 1979).
7. Braun, S., Rappoport, S., Zusman, R., Avnir, D., Ottolenghi, M., Mater. Lett., 10, 1 (1990).
8. Yamanaka, S.A., Nishida, F., Ellerby, L.M., Nishida, C.R., Dunn, B., Valentine, J.S., Zink, J.I., Chem. Mater., 4, 495 (1992).
9. Audebert, P., Demaille, C., Sanchez, C., Chem. Mater., 5, 911 (1993).
10. Chen, Q., Kenausis, G.L., Heller, A., J. Am. Chem. Soc., 120, 4582 (1998).
11 Badjic, J.D., Kostic, N.M., Chem. Mater., 11, 3671 (1999).
12. Heller, J., Heller, A., J. Am. Chem. Soc., 120, 4586 (1998)
13. Schmid, R.D., Verger, R., Angew. Chem. Int. Ed., 37, 1608 (1998).
14. Reetz, M.T., Adv. Mater., 9, 943 (1997).
15. Willaert, R.G., Baron, G.V., Baker, L. de in Immobilized Living Cell Systems, ed. Willaert, R.G., Baron, G.V., Baker, L. de (John Wiley, 1996) pp.2195.
16. Carturan, G., Campostrini, R., Dire, S., Scardi, V., Alteriis, E. de, J. Mol. Catal., 57, L13 (1989).
17. Inama, L., Dire, S., Carturan, G., Carazza, A., J. Biotechnol., 30, 197 (1993).
18. Fennouh, S., Guyon, S., Jourdat, C., Livage, J., Roux, C., C.R. Acad. Sci. Paris, IIc, 625 (1999).
19. Livage, J., Roux, C., Costa, J.M. Da, Desportes, I., Quinson, J.Y., J. Sol-Gel Sci. Tech., 7, 45 (1996).
20. Collino, R., Therasse, J., Binder, P., Chaput, F., Boilot, J.P., Levy, Y., J. Sol-Gel Sci. Tech., 2, 823 (1994).
21. Turniansky, A., Avnir, D., Bronshtein, A., Aharonson, N., Altstein, M., J. Sol-Gel Sci. Tech., 7, 135 (1996).
22. Lan, E.H., Dunn, B., Zink, J.I., Chem. Mater., 12, 1874 (2000).
23. Barreau, J.Y., Costa, J.M. da, Desportes, I., Livage, J., Monjour, L., Gentilini, M., C.R. Acad. Sci. Paris, 317, 653 (1994).
24. Venkatesan, P., Wakelin, D., Parasitology Today, 9, 228 (1993).
25. Carturan, G., Dellagiacoma, G., Rossi, M., R. Dal Monte, Muraca, M., Sol-Gel Optics IV, SPIE Proc., 3136, 366 (1997).
26. Pope, E.J.A., Braun, K., Peterson, C.M., J. Sol-Gel Sci. Tech., 8, 635 (1997).

Related content

Powered by UNSILO

Enzymes and Cells Confined in Silica Nanopores

  • Jacques Livage (a1), Cécile Roux (a1), Thibaud Coradin (a1), Souad Fennouh (a1), Stéphanie Guyon (a1), Laurie Bergogné (a1), Anne Coiffier (a2) and Odile Bouvet (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.