Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T06:41:07.962Z Has data issue: false hasContentIssue false

Enrichment of Uranium inside Wood: a Natural Analog from a Sandstone-hosted Roll-type Uranium Ore Deposit

Published online by Cambridge University Press:  17 March 2011

Huifang X
Affiliation:
epartment of Geology and Geophysics, University of Wisconsin, Madison Wisconsin 53706, U.S.A.,, hfxu@geology.wisc.edu
Maozhong Min
Affiliation:
Department of Earth Sciences, State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing 210093, P. R., China
Jia Zhen
Affiliation:
Department of Earth Sciences, State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing 210093, P. R., China
Xinjian Peng
Affiliation:
Department of Earth Sciences, State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing 210093, P. R., China
Jinping Wang
Affiliation:
Department of Earth Sciences, State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing 210093, P. R., China
Larry Barton
Affiliation:
Department of Biology, University of New Mexico, Albuquerque New Mexico 87131, U. S. A.
Yifeng Wang
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U. S. A.
Get access

Abstract

Furniture contaminated with uranium will be disposed of, together with U-bearing waste, in ageological repository such as the WIPP site in New Mexico. It is important to understand the effect of the wooden furniture on the migration of uranium in order to predict long-term behavior of uranium in a geological repository environment. In this paper, we present natural uraninite-bearing carbonized wood pieces from a sandstone-hosted roll-type uranium ore deposit in NW China. Results from SEM and TEM observations show that there are nanometer sized, and micron-sized, uraninite crystals that have accumulated on cell walls of the carbonized wood. Some uranitite crystrals display oval and round shapes that may be the result of microbial-induced reduction of uranium from groundwater. The wood carbonized fragments are the most uranium-rich “phase.” In some areas, aggregates of pyrite crystals occur withthe uraninite. It is proposed that organic components from the decay of the wood cells provide nutrientsfor the anaerobic bacteria to grow. The wood pieces with the bacteria inside may serve as scavengers of uranium because of the local reducing chemical environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lovley, D. R., , Phillips, , E. J. P., Gorby, Y. A. & Landa, E.R. Microbial reduction of uranium. Nature, 350, 413416 (1991).Google Scholar
2. , Barton, , L. L., Choudhury, K., Thomson, B. M., Steenhoudt, K. & , Groffman, A. R.. Bacterial reduction of soluble uranium: the first step of in situ immobilization of uranium. Radio. Waste Manage. Environ. Restor., 20, 141145 (1996).Google Scholar
3. , Phillips, , E. J. P., Lovely, D. R. & , Landa, E. R.Remediation of uranium contaminated soils with biocarbonate extraction and microbial U(VI) reduction. J. Ind. Microbiol. 14, 203206 (1995).Google Scholar
4. , Panak, P. J. Complex formation of U (VI) with Bacillus-isolates from a uranium mining waste pile. Radiochim. Acta. 88, 7185 (2000).Google Scholar
5. , Milodowski, E, A.. et al. Uranium-mineralized microorganisms associated with uraniferous hydrocarbons in southwest Scotland. Nature, 347, 465467 (1990).Google Scholar
6. Degens, E. T. & , Ittekkot, V. In situ metal-stainning of biological membranes in sediments. Nature, 298, 262264 (1982).Google Scholar
7. , Lowenstam, N.A. Minerals formed by organisms. Science, 211, 11261130 (1981).Google Scholar
8. Min, M., Z. et al. An excellent fossil wood cell texture with primary uranium minerals at a sandstone-hosted roll-type uranium deposit, NW China. Ore Geology Reviews, 17, 233239 (2001).Google Scholar
9. Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta, 42,547569 (1978).Google Scholar
10. Charles, S. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology reviews. 11, 5359 (1996).Google Scholar
11. Plant, J., Simpson, P. R, Smith, B., & Windley, B. F In: Burns, P.C. & Finch, R: Uranium Mineralogy, Geochemistry and the Environment. pp 393-410, Washington, D. C. (1999).Google Scholar
12. Nash, J. T., Granger, H. C. & , Adams, S. S. Geology and concepts of genesis of important type of uranium deposits. Econ. Geol., 75, 63116 (1981).Google Scholar
13. Tucker, M. D., Barton, L. L. & Thompson, B. M. Reduction of Cr, Mo, Se, and U by Desulfovibrio desulfuricans immobilized in polacrylamide gels. J Ind MicrobiolBiotechnol, 20, 1319 (1998).Google Scholar
14. Xu, H., Barton, L. L., Zhang, P. & Wang, Y. TEM investigation of U6+ and Re7+ reduction by Desulfovibrio desulfuricans, a sulfate-reducingbacterium. Scientific Basis for Nuclear Waste Management, 23, 365371 (2000).Google Scholar
15. Min, M. Z. .et al. Biomineralization in sandstone-hosted interlayer oxidation-zone type uranium deposits. Progress in Natural Sciences, 13, 164168 (2003) (in Chinese).Google Scholar
16. Gravesen, S., Frisvad, J. C & , Samson, Microfungi, R. A.. 165 (Denmark, Netherlands, 1994).Google Scholar
17. Lovley, D. R. & , Phillips, E. J. P. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol., 58, 850856 (1992).Google Scholar
18. Gadd, G. M. Influence of microorganisms on the environmental fate of radionuclides. Endeavour, 20, 150156 (1996).Google Scholar
19. Tsezos, M. & Volesky, B. The mechanisms of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng., 24, 385401 (1982).Google Scholar
20. , Jensen, M. L. Sulfur isotopes and the origin of sandstone-type uranium deposit. Econ. Geo. 53, 598616 (1958).Google Scholar
21. Reynolds, R. L. & Goldhaber, M. B. Origin of a South Texas roll-type uranium deposit: II. Sulfide petrology and sulfur isotope studies. Econ. Geol., 73, 16901705 (1978).Google Scholar
22. Reynolds, R. L. & Goldhaber, M. B. Biogenic and nonbiogenic ore-forming processes in the South Texas U district: evidence from the Panna Maria deposit. Econ. Geol., 77, 541556 (1982).Google Scholar
23. Northrop, H. R. et al. Genesis of the tabular-type vanadium-uranium deposits of Herry basin, Utah. Econ. Geol., 85, 215269 (1990).Google Scholar
24. Updegraff, D. M & Douros, J. D. The relationship of microorganisms to uranium deposits. Dev. Ind. Microbiol., 13, 7690 (1972).Google Scholar
25. Macaskie, L. E. the application of biotechnology to the treatment of wastes producedfrom the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit. Rev. Biotechnol., 11, 41112 (1991).Google Scholar
26. Panak, P. et al. Bacteria from uranium mining waste pile: interacton with U(VI). Abstracts Euroconference on Bacteria-Metal/Radionuclide interaction: Basic Research and Bioremediation, pp 87-89 (1998).Google Scholar