Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T14:49:42.127Z Has data issue: false hasContentIssue false

Enhancement of Ion Mobility in Aluminosilicate-Polyphosphazene Nanocomposites

Published online by Cambridge University Press:  10 February 2011

J. C. Hutchison
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208–3113
R. Bissessur
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208–3113
D. F. Shriver
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208–3113
Get access

Abstract

Nanocomposites of poly(bis-(2(2-memoxyethoxy)ethoxy)phosphazene) (MEEP) or cryptand[2.2.2] with the aluminosilicate Na-montmorillonite (NaMont) were studied to develop new solid electrolytes with high conductivity and a unity cation transport number. An aluminosilicate was chosen because the low basicity of the Si-0-Al framework should minimize ion pairing. To further reduce ion pairing, solvating molecules or polymers such as cryptand[2.2.2] or MEEP were introduced into the aluminosilicate. When compared to pristine Na-montmorillonite, impedance spectroscopy indicates an increase in conductivity of up to 100 for MEEP-NaMont intercalates, and of 50 for cryptand[2.2.2]·NaMont intercalates. The MEEP·NaMont intercalate exhibits high ionic conductivity anisotropy with respect to the montmorillonite layers (σpara.perp. = 100), which is consistent with increased tortuosity of the cation diffusion path perpendicular to the structure layers. The temperature dependance of the conductivity suggests that cation transport is coupled to segmental motion of the intercalated polymer, as observed previously for simple polymer-salt complexes. Nanocomposites of solvating polymers or molecules with aluminosilicates provide a promising new direction in solid-state electrolytes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Ratner, M. A.; Shriver, D. F. Chem. Rev. 1988, 88, 109.Google Scholar
(2) MacCallum, J. R.; Vincent, C. A., Polymer Electrolyte Reviews; Elsevier: London, 1987, 1989; Vols. 1,2.Google Scholar
(3) Tonge, J. S.; Shriver, D. F. In Polymers for Electronic Applications; Lai, J. H., Ed.; CRC Press: Boca Raton, FL, 1989; pp.194200.Google Scholar
(4) Wang, W. L.; Lin, F. L. Solid St. Ionics, 1990, 40/41, 125.Google Scholar
(5) Fan, Y.Q. Solid St. Ionics, 1988, 28–30, 1596.Google Scholar
(6) Slade, R.; Barker, J.; Hirst, P. Solid St. Ionics 1987, 24, 289.Google Scholar
(7) Hutchison, J. C; Bissessur, R.; Shriver, D. F. In Molecularly Designed Nanostructured Materials, Chow, Gan-Moog, ed., ACS Symposium Series, 622, 263272.Google Scholar
(8) Hutchison, J. C; Bissessur, R.; Shriver, D. F.; Chem. Mater., 1996, 8, 15971599.Google Scholar
(9) Ruiz-Hitzky, E.; Aranda, P.; Casal, B.; Galván, , J. Adv. Mater. 1995, 7, 180.Google Scholar
(10) Vaia, R.; Vasudevan, S.; Wlodzimierz, K.; Scanion, L.; Giannelis, E. Adv. Mater. 1995, 7, 154.Google Scholar
(11) Wu, J.; Lerner, M. Chem. Mater. 1993, 5, 835.Google Scholar
(12) Aranda, P. Adv. Mater. 1993, 5, 334.Google Scholar
(13) Aranda, P.; Ruiz-Hitzky, E. Chem. Mater. 1992, 4, 13951403.Google Scholar
(14) Aranda, P.; Galvan, J.; Casal, B.; Ruiz-Hitzky, E. Electrochem. Acta 1992, 37, 1573.Google Scholar
(15) Ruiz-Hitzky, E.; Aranda, P. Adv. Mater. 1990, 2, 545547.Google Scholar
(16) Ruiz-Hitzky, E.; Casal, B. Nature, 1978, 276, 596597 Google Scholar
(17) Wong, S.; Vasudevan, S.; Vaia, R.; Giannelis, E.; Zax, D. J., Am. Chem. Soc, 1995, 117, 75687569.Google Scholar
(18) Allcock, H. R.; Austin, P. E.; Neenan, T. X.; Sisko, J. T.; Blonsky, P. M.; Shriver, D. F. Macromolecules 1986, 19, 1508.Google Scholar
(19) Boukamp, B. A., Equivalent Circuit vs. 3.6. University of Twente, P.O. Box 217, 7500 A.E. Entshede, Netherlands.Google Scholar
(20) Rawsky, G.; Shriver, D. F. unpublished results.Google Scholar
(21) Vogel, H. Phys. Z. 1921, 22, 645.Google Scholar
Tamman, G.; Hesse, W. Z. Anorg. Alig. Chem. 1926, 165, 254.Google Scholar
Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8, 339.Google Scholar
(22) Cheradame, H. In IUPAC Macromolecules; Benoit, H.; Rempp, P. Eds.; Pergamon Press: New York, 1982; p. 251.Google Scholar
(23) Killis, A.; LeNest, J. F.; Cheradame, H. J. J. Polym. Sci., Makromol. Chem., Rapid Commun. 1980, 1;, 595.Google Scholar
(24) Killis, A.; LeNest, J. F.; Gandini, A.; Cheradame, H. J. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1073.Google Scholar
(25) Killis, A.; LeNest, J. F.; Gandini, A.; Cheradame, H. J.; Cohen-Addad, J. P. Solid State Ionics 1984, 14, 231.Google Scholar
(26) Druger, S. D.; Ratner, M. A.; Nitzan, A. Phys Rev. B. 1985, 31, 3939.Google Scholar
(27) Tipton, A. L.; Lonergan, M. C; Shriver, D. F. J. Phys. Chem. 1994, 98, 4148.Google Scholar
(28) Lonergan, M. C; Ratner, M. A.; Shriver, D. F. J Am. Chem. Soc. 1995, 117, 2344.Google Scholar