Skip to main content Accessibility help

Enhanced Carbon Diffusion in Silicon During 900°0 Annealing

  • L. A. Ladd, J. P. Kalejs (a1) and U. Gösele (a2)


Enhanced diffusion of carbon Is observed to be produced during anneal ing of silicon at 900°C under conditions of surface oxidation and phosphorus in-diffusion. Silicon containing high concentrations of carbon (∼9 × 1017/cm3 substitutional) and varying levels of interstitial oxygen and differing defect concentrations has been studied. Diffusion coefficient enhancement over the value found for an anneal in an inert ambient is by a factor of three during oxidation and a factor of forty with phosphorus in-diffusion. Carbon accumulation takes place in a region 0.3–0.5 microns from the sample surface only under conditions of phosphorus in-diffusion and is attributed to carbon precipitation. A model that assumes Interactions between silicon self-interstitials and the carbon can explain both the enhanced diffusion and the carbon accumulation.



Hide All
1. For references, see Kolbesen, B.O. and MUhlbauer, A., Solid State Electron., 21, 759 (1982).10.1016/0038-1101(82)90206-4
2. Kalejs, J.P. and Ladd, L.A., Appl. Phys. Lett., 45, 540 (1984).10.1063/1.95307
3. Kalejs, J.P., Ladd, L.A. and Göisele, U., Appl. Phys. Lett., 45, 268 (1984).10.1063/1.95167
4. Glelchmann, R., Kalejs, J.P., and Ast, D.G., this Symposium Volume.
5. Newman, R.C. and Wakefield, J., J. Phys. Chem. Solids, 12, 230 (1961); Metallurgy of Semiconductor Materials, edited by J.B. Schroeder (Interscience, New York, 1961), p. 201.10.1016/0022-3697(61)90032-4
6. Hu, S.M., J. Appl. Phys., 45, 1567 (1974).10.1063/1.1663459
7. Antonladis, D.A., J. Electrochem. Soc., 129, 1093 (1982).10.1149/1.2124034
8. Göisele, U. and Tan, T.Y., In Agaregation Phenomena of Point Defects in Silicon edited by Sirtl, E. and Goorissen, J. (Electrochemical Society, Pennington, NJ, 1983), p. 17.
9. For further references, see GWsele, U. and Tan, T.Y., in Defects In Semiconductors II, edited by Corbett, J.W. and Mahajan, S. (North-Holland, New York, 1983), p. 153.
10. Mizuo, S. and Higuchl, H., Jpn. J. Appl. Phys., 20, 739 (1981).10.1143/JJAP.20.739
11. For a detailed quantitative treatment, see Tan, T.Y., Gbsele, U., and Morehead, F., Appl. Phys., A31 97 (1983).10.1007/BF00616312
12. See, e.g., Strunk, H., Gtosele, U., and Kolbesen, B.O., Appl. Phys. Lett. 34, 530 (1979); R.M. Harris and D.A. Antonladis, Appl. Phys. Lett., 4A, 937 (1983); P. Fahey, R.W. Dutton, and S.M. Hu, Appl. Phys. Lett., A4, 777 (1984).10.1063/1.90853
13. Annual Book of ASTM Standards (ASTM, Philadelphia, 1981), Part 43, F121.
14. Bean, A.R. and Newman, R.C., J. Phys. Chem. Solids, 32, 1211 (1971).10.1016/S0022-3697(71)80179-8

Enhanced Carbon Diffusion in Silicon During 900°0 Annealing

  • L. A. Ladd, J. P. Kalejs (a1) and U. Gösele (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed