Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T03:30:23.209Z Has data issue: false hasContentIssue false

The Energy Dependence of Ion Damage in A1xGa1−xAs/GaAs HETErostructures and The Effects of Implanted Impurity

Published online by Cambridge University Press:  28 February 2011

A. G. Cullis
Affiliation:
DRA Electronics Division, Royal Signals and Radar Establishment, St Andrews Road, Malvern, Worcs WR14 3PS, UK
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA
A. Polman
Affiliation:
FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
P. W. Smith
Affiliation:
DRA Electronics Division, Royal Signals and Radar Establishment, St Andrews Road, Malvern, Worcs WR14 3PS, UK
J. M. Poate
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA
C. R. Whitehouse
Affiliation:
DRA Electronics Division, Royal Signals and Radar Establishment, St Andrews Road, Malvern, Worcs WR14 3PS, UK
Get access

Abstract

Bombardment damage produced by Si+ ions in AlxGa1−xAs/GaAs layer structures has been studied using transmission electron microscopy and ion channeling and backscattering spectrometry. The damage resistance of A1xGa1−xAs alloy layers increases with Al concentration. In particular, by comparison of complementary Si+ ion doses yielding similar nuclear displacement densities at 150keV and 2MeV bombardment energies, it is demonstrated for the first time that the local concentration of implanted Si impurity is likely to be a significant factor in controlling lattice damage build-up, especially for the highest Si+ ion implantation doses. It is also shown that, in a manner analogous to A1As, the alloy layers can confer a significant protection from ion damage upon adjacent, epitaxially-bonded narrow zones of crystalline GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deppe, P.G. and Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).Google Scholar
2. Kawabe, M., Matsuara, N., Shimizu, N., Hasegawa, F. and Nannichi, Y., Jpn. J. Appl. Phys. 23, L623 (1984).Google Scholar
3. Cullis, A.G., Chew, N.G., Whitehouse, C.R., Jacobson, D.C., Poate, J.M. and Pearton, S.J., Appl. Phys. Lett. 55, 1211 (1989).CrossRefGoogle Scholar
4. Cullis, A.G., Smith, P.W., Jacobson, D.C. and Poate, J.M., J. Appl. Phys. 69, 1279 (1991).Google Scholar
5. Eaglesham, D.J., Poate, J.M., Jacobson, D.C., Cerullo, M., Pfeiffer, L.N. and West, K., Appl. Phys. Lett. 58, 523 (1991).Google Scholar
6. Ralston, J., Wicks, G.W., Eastman, L.F., DeCooman, B.C. and Carter, C.B., J. Appl. Phys. 59, 120 (1986).CrossRefGoogle Scholar
7. Matsui, K., Takamori, T., Fukunaga, T., Narusawa, T. and Nakashima, H., Jpn. J. Appl. Phys. 26, 482 (1987).CrossRefGoogle Scholar
8. -Tong Lee, S., Braunstein, G., Fellinger, P., Kahen, K.B. and Rajeswaren, G., Appl. Phys. Lett. 53, 2531 (1988).Google Scholar
9. JenčiC, I., Bench, M.W., Robertson, I.M. and Kirk, M.A., J. Appl. Phys. 69, 1287 (1991).CrossRefGoogle Scholar
10. Dobisz, E.A., Dietrich, H, McCormick, A.W. and Harbison, J.P., Mat. Res. Soc. Symp. Proc. 147, 285 (1989).Google Scholar
11. Chew, N.G. and Cullis, A.G., Ultramicroscopy 23, 175 (1987).Google Scholar
12. Cullis, A.G., Polman, A., Smith, P.W., Jacobson, D.C., Poate, J.M. and Whitehouse, C.R., Nucl. Instr. and Meth. (1992) in the press Google Scholar
13. Biersack, J.P. and Haggmark, L.J., Nucl. Instr. and Meth. 174 (1980) 257.Google Scholar
14. Vieu, C., Schneider, M., Planel, R., Launois, H., Descouts, B. and Gao, Y., J. Appl. Phys. 70, 1433 (1991).Google Scholar