Skip to main content Accessibility help

Energetic Decomposition of High-Nitrogen Metal Complexes and the Formation of Low-Density Nano-Structured Metal Monoliths

  • Bryce C Tappan (a1), My Hang Huynh (a2), Michael A. Hiskey (a3), David E. Chavez (a4), Erik P. Luther (a5), Joseph T. Mang (a6) and Steven F. Son (a7)...


Metal complexes of the energetic high-nitrogen ligand, bistetrazole amine (BTA) were ignited in inert environments and their decomposition characteristics were determined. These molecules were found to have the unique properties of a comparatively slow burning rate with very little pressure dependency, unlike most energetic, metal-containing molecules which tend to detonate, rather than burn steadily. This process resulted in unprecedented ultra-low-density, nano-structured, transition metal monoliths, useful as a self-propagating combustion synthesis technique. The resulting nanostructured metal monolithic foams formed in the post flame-front dynamic assembly have remarkably low densities down to 0.011 g cm-3 and extremely high surface areas as high as 270 m2 g-1. In this work we discuss primary the production of iron monoliths, however have produced monolithic nano-porous metal foams via this method with cobalt, copper and silver metals as well. We expect to be able to apply this to many other metals and to be able to tailor the resulting structure significantly.



Hide All
1. Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wasley, H.N.G., Metal Foams: A Design Guide; Butterworth-Heinemann: Woburn, MA, (2000)
2. Kistler, S.S., Nature,, 127, 741 (1931)
3. Kistler, S.S., J. Phys. Chem, 36, 52 ( 1932)
4. Suh, D.J., Park, T.J., Chem. Mater., 8, 509 (1996)
5. Gibson, L., Annu. Rev. Mater. Sci., 30, 191 (2000)
6. Kanahashi, H., Mukai, T., Yamada, Y., Shimojima, K., Mabuchi, M., Nieh, T.G., Higashi, K., Mater. Sci. Eng., A280, 349. (2000)
7. Walsh, D., Arcelli, L., Toshiyuki, I., Tanaka, J, Mann, S., Nature Mater., 2, 386 (2003)
8. Song, Y., Yang, Y., Medforth, C.J., Pereira, E., Singh, A.K., Xu, H., Jiang, Y., Brinker, C.J., van Swol, F., J.A. Shelnutt., J. Am. Chem. Soc., 126, 635 (2004)
9. Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.L., Satcher, J.H. J. Appl. Physic., 97, 1 (2005)
10. Sherman, A.J., Williams, B.E., Delarosa, M.J., Laferla, R., (Mater. Res. Soc. Symp. Proc. 207, Boston, MA, 1991) pp. 141.
11. Norris, W., J. Org. Chem., 29, 650 (1964)
12. Highsmith, T.K.; Hajik, R.M.; Wardle, R.B.; Lund, G.K.; Blau, R.J. U.S. Patent 5,468,866, (1995)
13. Naud, D.L., Hiskey, M.A., U.S. Patent 6,570,022, (2003)
14. Chavez, D.E.; Hiskey, M.A.; Naud, D. L. J. Pyrotech. 10, 17 (1999)
15. Tappan, B.C., Huynh, M.H., Hiskey, M.A., Chavez, D.E., Son., S.F., & Oschwald, D.M. US patent (2005) (submitted)
16. Persson, P.A.; Holmberg, R.; Lee, J. Rock Blasting and Explosives Engineering CRC Press: Boca Raton, FL, 1994
17. Beaucage, G., J. Appl. Crystallogr., 28, 717 (1995)
18. Evans, A.G., Hsueh, C.H., J. Am. Ceram. Soc., 69, 444 (1986)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed