Skip to main content Accessibility help

EMCD: Magnetic Chiral Dichroism in the Electron Microscope

  • Stefano Rubino (a1), Peter Schattschneider (a2), Michael Stöger-Pollach (a3), Cécile Hébert (a4), Ján Rusz (a5), Lionel Calmels (a6), Benedicte Warot-Fonrose (a7), Florent Houdellier (a8), Virginie Serin (a9) and Pavel Novàk (a10)...


A new technique called Energy-loss Magnetic Chiral Dichroism (EMCD) has recently been developed [1] to measure Magnetic Circular Dichroism (MCD) in the Transmission Electron Microscope (TEM) with a spatial resolution of 10 nm. This novel technique is the TEM counterpart of X-ray Magnetic Circular Dichroism (XMCD), which is widely used for the characterization of magnetic materials with synchrotron radiation.

In this paper we describe several experimental methods which can be used to measure the EMCD signal [1-5] and give a review of the recent improvements of this new investigation tool. The dependence of the EMCD on several experimental conditions (such as thickness, relative orientation of beam and sample, collection and convergence angle) is investigated in the transition metals Iron, Cobalt and Nickel. Different scattering geometries are illustrated; their advantages and disadvantages are detailed, together with current limitations. The next realistic perspectives of this technique will consist in measuring atomic specific magnetic moments, using suitable spin and orbital sum rules [4,6], with a resolution down to 2-3 nm.



Hide All
1. Schattschneider, P. et al. : Nature 441 (2006) 486488;10.1038/nature04778
2. Hébert, C. et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.07.011);
3. Warot-Fonrose, B. et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.05.013);
4. Calmels, L. et al. : Phys. Rew. B 76 (2007) 060409.10.1103/PhysRevB.76.060409
5. Aken, P. van et al. : Microsc. Microanal. 13(3) (2007) 426427;
6. Rusz, J. et al. : Phys. Rew. B 76 (2007) 060408;10.1103/PhysRevB.76.060408
7. Kim, D. H et al. : J. Appl. Phys. 99 (2006) 08H303;10.1063/1.2208308
8. Schütz, G. et al. : Phys. Rew. Lett. 58 (1987) 737740;10.1103/PhysRevLett.58.737
9. Thole, B. T et al. : Phys. Rew. Lett. 68 (1992) 1943;10.1103/PhysRevLett.68.1943
10. Chen, C. T et al. : Phys. Rew. Lett. 75 (1995) 152155;10.1103/PhysRevLett.75.152
11. Hitchcock, A. P et al. : Jpn. J. Appl. Phys. 32(2) (1993) 176181;10.7567/JJAPS.32S2.176
12. Aken, P. van, Lauterbach, S.: Phys. Chem. Miner. 30 (2003) 469477;10.1007/s00269-003-0340-4
13. Schütz, G. et al. : Z. Phys. B 75 (1989) 495;10.1007/BF01312528
14. Lovesey, S. W and Collins, S. P, X-ray scattering and absorption by magnetic materials, ed. Chikawa, J., Helliwell, J. R and Lovesey, S. W (Clarendon Press, Oxford, 1996) pp. 120131;
15. Kohl, H. and Rose, H.: Adv. Electron. Electron Phys. 65 (1985) 173;10.1016/S0065-2539(08)60878-1
16. Rusz, J., Rubino, S. and Schattschneider, P.: Phys. Rew. B 75 (2007) 214425;10.1103/PhysRevB.75.214425
17. Metherell, A. J. F. in Electron microscopy in material science, ed. Ruedl, E. and Valdrè, U. (CEC, Luxembourg, 1975) pp 397552;
18. Kainuma, Y.: Acta Crystallog. 8 (1955) 247;10.1107/S0365110X55000832
19. Morniroli, J. P et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.03.016);
20. Schattschneider, P. et al. : Ultramicroscopy, in print (doi 10:1016/j.ultramic.2007.07.002);
1. Verbeeck, J. et al. : Ultramicroscopy, submitted;
22. Hejtmanek, J. et al. : Phys. Rew. B 66 (2002) 014426.10.1103/PhysRevB.66.014426



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed