Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T13:34:27.337Z Has data issue: false hasContentIssue false

Emanation Thermal Analysis Study of Brannerite

Published online by Cambridge University Press:  21 March 2011

V. Balek
Affiliation:
Nuclear Research Institute CZ- 25068 Rez, Czech Republic
V. Zelenák
Affiliation:
Nuclear Research Institute CZ- 25068 Rez, Czech Republic On leave from the Faculty of Sciences, University of Kozice, Moyzesova 11, SK-04154 Kozice, Slovak Republic
Z. Málek
Affiliation:
Nuclear Research Institute CZ- 25068 Rez, Czech Republic
E. R. Vance
Affiliation:
Australian Nuclear Science and Technology Organization, Private Mailbag 1, Menai (Sydney), NSW 2234, Australia
J. Subrt
Affiliation:
Institute of Inorganic chemistry, Academy of Sciences of the Czech Republic, CZ-25068, Rez, Czech Republic
Get access

Abstract

Radon emanation thermal analysis (ETA) during ”step by step”heating to selected temperatures up to 1200oC in argon and subsequent cooling yielded detailed information on the annealing of radiation damage and macroscopic defects in a natural brannerite. Thermogravimetry showed mass losses in the temperature ranges 230-315, 570-760 and 840-1040oC. Mass spectrometry of the evolvedgases indicated M/Z = 44, i.e. CO2. Crystallization of initially amorphous brannerite was indicated by ETA in the temperature range 900-1020oC, in agreement with the X-ray diffraction results. From the radon diffusion activation energy values determined in ETA, the degree of structural ordering was assessed at different temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., Nature (London) 278, p.219 (1979).Google Scholar
2. Ebbinghaus, B., Konynenburg, R. A. Van, Ryerson, F.J., Vance, E. R., Stewart, M. W. A., Jostsons, A., Allender, J. S., Rankin, T. and Congdon, J., Waste Management ‘98 (CD-ROM), Tucson, AZ, USA, March 5, 1998.Google Scholar
3. Vance, E. R., Stewart, M. W. A., Day, R. A., Hart, K. P., Hambley, M. J. and Brownscombe, A., ”Pyrochlore-rich Titanate ceramics for Incorporation of Plutonium, Uranium and Process Chemicals”, ANSTO report (1997).Google Scholar
4. Szymanski, J. T. and Scott, J. D., Canad. Mineral 20, p.271 (1982).Google Scholar
5. Patchett, J. E. and Nuffield, E. W., Canad. Mineral. 6, p.483 (1960).Google Scholar
6. Ringwood, E., Kesson, S. E., Reeve, K. D., Levins, D. M. andRamm, E. J., in: “Radioactive Waste Forms for the Future”, eds. Lutze, W. and Ewing, R. C., Elsevier 1988, pp 233-334.xsGoogle Scholar
7. Balek, V., Thermochim Acta 22, p.1 (1977).Google Scholar
8. Balek, V., J. Therm. Anal. 35, p.405 (1989).Google Scholar
9. Balek, V., Thermochim Acta 192, p.1 (1991).Google Scholar
10. Vance, E. R., Watson, J. N., Carter, M. L., Day, R. A, Lumpkin, G. R., Hart, K. P., Zhang, Y., McGlinn, P. J., Stewart, M. W. A. and Cassidy, D. J., in: Environmental Issues and Waste Management Technologies V, Eds. Spearing, D. and xxx, American Ceramic Society 2000, pp.561568. Google Scholar