Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T09:18:46.405Z Has data issue: false hasContentIssue false

Elevated Temperature Reactive Ion Etching of GaAs and AIGaAs in C2H6 / H2

Published online by Cambridge University Press:  21 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611
Get access

Abstract

The temperature dependence of etch rate, surface morphology and atomic composition, and depth of hydrogen passivation of Si dopants in n-type GaAs and AIGaAs has been measured for reactive ion etching in C2H6 /H2. The etching of GaAs shows an increase of a factor of two between 150 and 250°C, decreasing at higher temperatures, while there is no temperature dependence for the etch rate of AlGaAs over the range 50-350°C. The As-to-Ga ratio in the nearsurface region of GaAs remains unchanged over the whole temperature range investigated and there is no polymer deposition. The etched surface morphology is smooth for both GaAs and AIGaAs for all temperatures while the depth of Si dopant passivation by hydrogen shows an increase with increasing substrate temperature during the etching treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Niggebrugge, U., Klug, M. and Garus, G., Inst. Phys. Conf. Ser. 79 367 (1985).Google Scholar
[2] Vodjdani, N. and Parrens, P., J. Vac. Sci. Techn. B5 1591 (1987).Google Scholar
[3] Cheung, R., Thomas, S., Beaumont, S. P., Doughty, G., Law, V. and Wilkinson, C. D. W., Electron. Lett 23 857 (1987).Google Scholar
[4] Cheung, R., Thomas, S., Mcintyre, J., Wilkinson, C. D. W. and Beaumont, S. P., J. Vac. Sci. Technol. B6 1911 (1988).Google Scholar
[5] Contolini, R. J., J. Electrochem. Soc. 135 929 (1988).Google Scholar
[6] Burton, R. H., Gottscho, R. A. and Smolinsky, G., Dry Etching for Microelectronics, ed. Powell, R. A. (Elselvier, NY 1984), Chapter 3.Google Scholar
[7] See for example, Pearton, S. J., Corbett, J. W. and Shi, T. S., Appl. Phys. A. 43 153 (1987).Google Scholar
[8] Zavada, J. M., Jenkinson, H. A., Sarkis, R. G. and Wilson, R. G., J. Appl. Phys. 58 3731 (1985).Google Scholar
[9] Pearton, S. J., Dautremont-Smith, W. C., Chevallier, J., Tu, C. W. and Cummings, K. D., J. Appl. Phys. 59 2821 (1986).Google Scholar
[10] Omeljanovsky, E. M., Kakhomov, A. V., Polyakov, A. J. and Govorkov, A. V., Proc. 5th Intl. Semi-insulating III-V Materials Conf. (Malmo Sweden 1988) - to be published.Google Scholar
[11] Chevallier, J. and Aucouturier, M., Ann. Rev. Mater. Sci. 18 265 (1988).Google Scholar
[12] Dautremont-Smith, W. C., Mat. Res. Soc. Symp. Proc. 104 385 (1988).Google Scholar