Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T14:10:57.659Z Has data issue: false hasContentIssue false

Electrostatic Potentials for Metal Oxide Surfaces and Interfaces

Published online by Cambridge University Press:  21 February 2011

F. H. Streitz
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. W. Mintmire
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

We discuss the development of interaction potentials which explicitly allow for charge transfer in metallic oxides. The charge transfer is calculated self-consistently using a charge equilibration approach, which allows the amount of charge transferred to respond to the electrostatic environment. We model the metal-metal, metal-oxygen, and oxygen-oxygen interactions with Rydberg function pair potentials. By fitting the Rydberg potential parameters to the elastic and structural constants of the material, we arrive at an efficient model for the simulation of metallic oxides. We demonstrate the applicability of the model by describing some preliminary results on the rutile phase of titanium dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Catlow, C. R. A., James, R., Mackrodt, W. C. and Stewart, R. F., Phys. Rev. B 25, 1006 (1982).CrossRefGoogle Scholar
2 Gale, J. D., Catlow, C. R. A. and Mackrodt, W. C., Modelling Simul. Mater. Sci. Eng. 1, 73 (1992).Google Scholar
3 Athanasopoulos, D. C. and Garofalini, S. H., J. Chem. Phys. 97, 3775, (1992).CrossRefGoogle Scholar
4 Iczkowsky, R. P. and Margrave, J. L., J. Am. Chem. Soc. 83, 3547, (1961).Google Scholar
5 Parr, R. G., Donnelly, R. A., Levy, M. and Palke, W. E. J., J. Chem. Phys. 68, 3801 (1978).Google Scholar
6 Parr, R. G. and Pearson, R. G., J. Am. Chem. Soc. 105, 7512 (1983).Google Scholar
7 Mortier, W. J., van Genechten, K. and Gasteiger, J., J. Am. Chem. Soc. 107, 829 (1985)CrossRefGoogle Scholar
8 Mortier, W. J., Gosh, S. K. and Shankar, S., J. Am. Chem. Soc. 108, 4315 (1986)CrossRefGoogle Scholar
9 Rappé, A. K. and Goddard, W. A., J. Phys. Chem. 95, 3358 (1991).Google Scholar
10 Rosen, N., Phys. Rev. 38, 255 (1931).CrossRefGoogle Scholar
11 Roothan, C. C. J., J. Chem. Phys. 19, 1445 (1951).CrossRefGoogle Scholar
12 de Leeuw, S. W., Perram, J. W. and Smith, E. R., Proc. R. Soc. Lond. A 373, 27 (1980)Google Scholar
13 Smith, E. R., Proc. R. Soc. Lond. A 375, 475 (1980)Google Scholar
14 Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
15 Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
16 Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B 33, 7983, (1986).Google Scholar
17 Johnson, R. A., Phys. Rev. B 37, 3924 (1988).Google Scholar
18 Johnson, R. A., Phys. Rev. B 39, 12554 (1989).Google Scholar
19 Abell, G. C., Phys. Rev. B 31, 6184 (1985).Google Scholar
20 Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988), Phys. Rev. Lett. 56, 632 (1986).Google Scholar
21 Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
22 Pettifor, D. G., Phys. Rev. Lett. 63, 2480 (1989).Google Scholar
23 Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
24 Streitz, F. H. and Mintmire, J. W., J. Adh. Sci. Technol., in press.Google Scholar
25 CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, Boca Raton, Florida 1983)Google Scholar
26 Pauling, L., The Nature of the Chemical Bond, (Cornell University Press, Ithaca, New York 1950)Google Scholar
27 Abrahams, J. C. and Bernstein, J. L., J. Chem. Phys. 55, 3206 (1971).Google Scholar
28 Manghnani, M. H., J. Geophys. Res. 74, 4317 (1969).Google Scholar
29 Fahmi, A., Minot, C., Silvi, B. and Causa, M., Phys. Rev. B 47, 11717 (1993).CrossRefGoogle Scholar
30 Parry, D. E., Surf. Sci 49, 433 (1975).Google Scholar
31 Hautman, J. and Klein, M. L., Mol. Phys. 75, 379 (1992).Google Scholar
32 Heyes, D. M., Surf. Sci. Lett. 293, L857 (1993).Google Scholar
33 Mintmire, J. W., Ph.D. dissertation (1980).Google Scholar
34 Smith, J.R., Schlosser, H., Leaf, W., Ferrante, J. and Rose, J.H., Phys. Rev. A 39, 514 (1989).Google Scholar
35 Carlsson, A. E., Fedders, P. A. and Myles, C. W., Phys. Rev. B 41, 1247 (1990).CrossRefGoogle Scholar
36 Kress, J. D. and Voter, A. F., Phys. Rev. B 43, 12607 (1991)CrossRefGoogle Scholar
37 Baskes, M. I., Phys. Rev. B 46, 2727 (1992).CrossRefGoogle Scholar