Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-11T00:31:11.946Z Has data issue: false hasContentIssue false

Electroreflectance Study of Light-Emitting Porous Silicon

Published online by Cambridge University Press:  17 March 2011

Toshihiko Toyama
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Akihito Shimode
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Hiroaki Okamoto
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Get access

Abstract

Electroreflectance spectroscopy measurements have been performed on light-emitting porous Si (LEPSi). The transmission electron microscope measurements reveal that LEPSi includes Si nanocrystals with a mean crystal size of 1–2 nm. The ER features are observed at a transition energy of 3.4 eV in all of the samples, giving that LEPSi still keeps the threedimensional (3D) electronic structure. Changes in the transition energies are not found for LEPSi with the different mean crystal sizes. Furthermore, we directly observed interband transitions of quantized states due to quantum-confined electron-hole (e-h) pairs in LEPSi as two or three extra ER features being located between 1.2 and 3.1 eV which are never observed in bulk crystalline Si. Employing a simple effective mass approximation model, we have evaluated the reduced mass, the kinetic energies and the Coulomb attraction energies of the quantumconfined e-h pairs. We also found that the energy distance between the transition energies at the ground state and the photoluminescence (PL) peak energies basically corresponds to the Coulomb attraction energies. Finally, we propose a new luminescent model based on interband transitions involving the quantum-confined dense e-h plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
2. Yoffe, A. D., Advances in Physics, 42, 173 (1993).Google Scholar
3. Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
4. Kanemitsu, Y., Phys. Rev. B 48, 12357 (1993).Google Scholar
5. Koch, F., Mater. Res. Soc. Symp. Proc. 298, 319 (1993).Google Scholar
6. Fauchet, P. M., in Light Emission in Silicon From Physics to Devices, Semiconductors and Semimetals, vol. 49, ed. Willardson, R. K., and Weber, E. R., (Academic Press, New York, 1997).Google Scholar
7. Kux, A. and Chorin, M. Ben, Phys. Rev. B 51, 17535 (1995).Google Scholar
8. Hilbrich, S., Theiss, W., Arens-Fischer, R., Glück, O., and Berger, M. G., Thin Solid Films, 276, 231 (1996).Google Scholar
9. Pickering, C., Canham, L. T., and Brumhead, D., App. Sur. Sci. 63, 22 (1993).Google Scholar
10. Suda, Y., Obata, K., and Koshida, N., Phys. Rev. Lett. 80, 3559 (1998).Google Scholar
11. Cardona, M., Modulation Spectroscopy (Academic Press, New York, 1962).Google Scholar
12. Toyama, T., Kotani, Y., Shimode, A., and Okamoto, H., Appl. Phys. Lett. 74, 3323 (1999).Google Scholar
13. Irani, R. R., and Callis, C. F., Particle size: measurement, interpretation, and application (Wiley, New York, 1963).Google Scholar
14. Richter, H., Wang, Z. P., and Ley, L., Solid State Commun. 39, 625 (1981).Google Scholar
15. Efros, Al. L. and Efros, A. L., Sov. Phys. Semicond. 16, 772 (1982); Brus, L. E., J. Chem. Phys. 79 5566, (1983); Kayanuma, Y., Phys. Rev. B 38, 9797 (1988).Google Scholar
16. Chemla, D. S., Miller, T. C., Miller, D. A. B., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett. 42, 864 (1983).Google Scholar
17. Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D., J. Phys: Condensed Matter 5, L91 (1993).Google Scholar
18. Vial, J. C., Bsiesy, A., Fishman, G., Gaspard, F., Herrino, R., Ligeon, M., Muller, F., Romestain, R., and MacFarlane, R. M., Mater. Res. Soc. Symp. Proc. 283, 241. (1993).Google Scholar
19. Mott, N. F., Metal-Insulator Transitions (Taylor & Francis, New York, 1990).Google Scholar