Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:49:38.755Z Has data issue: false hasContentIssue false

Electron-Transporting Thiophene-Based Semiconductors Exhibiting Very High Field Effect Mobilities

Published online by Cambridge University Press:  17 March 2011

Antonio Facchetti
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
Myung-Han Yoon
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
Tobin J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
Get access

Abstract

Organic semiconductors exhibiting complementary n-type carrier mobility are the key components for the development of the field of “plastic electronics”. We present here a novel series of oligothiophenes designed to improve performance and stability under electron- transporting conditions. Furthermore, the key structural features of these compounds allows additional modifications of the n-type conducting core to achieve material solubility and processability. Thin film transistor (TFT) devices were fabricated employing both vacuum- and solution-deposited semiconducting layers. Field-effect transistor measurements indicate that all the members of this new series are n-type semiconductors with mobilities and Ion:Ioff ratios approaching 1 cm2/(Vs) and 107, respectively. This family represents a key milestone in the design, understanding, and development of the next generation of highly efficient n-type OTFT components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sze, S.M. Semiconductor Devices: Physics and Technology; Wiley: New York, 1985; p. 67, 216-218, 507-510.Google Scholar
[2] Moore, G. E. IEEE IEDM Tech. Dig. 11–13 (1975).Google Scholar
[3] Mushrush, M.; Facchetti, A.; Lefenfeld, M.; Katz, H. E.; Marks, T. J. J. Am. Chem. Soc. 125, 9414, (2003).Google Scholar
[4] Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 280, 1741, (1998).Google Scholar
[5] (a) Wang, Z.; Yuan, J.; Zhang, J.; Xing, R.; Yan, D.; Han, Y. Adv. Mater. 15, 1009, (2003) (b) Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 290, 2123, (2000).Google Scholar
[6] Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Chem. Mater. 13, 3728, (2001).Google Scholar
[7] Dimitrakopoulos, D., Malenfant, P. R. L., Adv. Mater. 14, 99, (2002).Google Scholar
[8] (a) Pappenfus, T. M., Chesterfield, R. J., Frisbie, C., Daniel, M., Kent, R. Casado, J., Raff, J. D., Miller, L. L., J. Am. Chem. Soc. 124, 4184, (2002). (b) P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni, Appl. Phys. Lett. 80, 2517, (2002). (c) H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 122, 7787, (2000). (d) B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 403, 521, (2000). (e) S. B. Heidenhain, Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, T., Mori, S. Tokito, Y. Taga, J. Am. Chem. Soc 122, 10240, (2000).Google Scholar
[9] (a) Facchetti, A., Yoon, M.-H.; Stern, C. L.; Katz, H. E. Marks, T. J. Angew. Chem., Int. Ed. 42, 3900, (2003). (b) A. Facchetti, M. Mushrush, H. E. Katz, T. J. Marks, Adv. Mater. 15, 33, (2003). (c) A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. 39, 4547, (2000).Google Scholar