Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T20:37:50.742Z Has data issue: false hasContentIssue false

Electronics Application for Fullerenes

Published online by Cambridge University Press:  22 February 2011

R.L. McNally
Affiliation:
Rice University, Department of Materials Science, Houston, Texas 77251-1892
F R. Brotzen
Affiliation:
Rice University, Department of Materials Science, Houston, Texas 77251-1892
A.J. Griffin Jr.
Affiliation:
Rice University, Department of Materials Science, Houston, Texas 77251-1892
P.J. Loos
Affiliation:
Texas Instruments, Inc., Houston Wafer Fab, Stafford, Texas 77251-1443
E.V. Barrera
Affiliation:
Rice University, Department of Materials Science, Houston, Texas 77251-1892
Get access

Abstract

Thin-film Al-C60-Al trilayered structures were sublimated under ultra high vacuum (UHV) conditions for the purpose of investigating their current-voltage (I-V) properties. These metal-semiconductor-metal devices exhibited rapid and irreversible drop in resistance of about two orders of magnitude under an applied voltage of 0.67 to 0.75V. Approximate initial and final resistances were 1050 Ω and 8 Ω respectively. Wavelength Dispersive Spectroscopy (WDS) indicated no noticeable change in phase of the fullerene inter-layer after the irreversible drop in resistance. These results, SEM micrographs and concentration profiles were concordant with diffusion of top layer Al through the fullerene layer as the most likely cause of the change in resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Saito, S. and Oshiyama, A., Phys. Rev. Lett. 66, 2637 (1991)Google Scholar
2 Weaver, J., Martins, J. L., Komeda, T., Chen, Y., Ohno, T. R., Kroll, G. H., Troullier, N., Haufler, R. E. and Smalley, R. E., Phys. Rev. Lett. 66, 1741 (1991)Google Scholar
3 Hebard, A.F., Haddon, R.C., Fleming, R.M. and Kortan, A. R., Appl. Phys. Lett. 59 (17), 21 October 1991 Google Scholar
4 Ren, S.L., Yang, Y., Rao, A. M., McRae, E., Hager, G. T., Wang, K. A., Lee, W. T., Ni, H. F., Selegue, J. and Eklund, P. C., Appl. Phys. Lett. 59, 2678 (1991)Google Scholar
5 Yang, y., Holden, J. M., Rao, A. M., Lee, W-T, Hager, G. T., Bi, X. X., Ren, S. L., Lehman, G. W. and Eklund, P. C., Phys. Rev. B 45, 14396 (1992)Google Scholar
6 Kortan, A. R., Kopylov, N., Glarum, S., Gyorgy, E. M., Ramirez, A.P., Fleming, R. M., Thiel, F.A. and Haddon, R. C., Nature 355, 529 (1992)Google Scholar
7 Stephens, P.W., Mihaly, L., Lee, P. L., Whetten, R. L., S. Huang, M., Kaner, R., Diederich, F. and Holczer, K., Nature 351, 632 (1991)Google Scholar
8 Sarkar, D., Halas, N. J., Appl. Phys. Lett. 63, 2438 (1993)Google Scholar