Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:32:08.385Z Has data issue: false hasContentIssue false

Electronic Structure of the ∑3[111] Grain Boundary and Doping Effect in Ni

Published online by Cambridge University Press:  21 February 2011

Wang Chongyu
Affiliation:
International Centre for Materials Physics, Academia Sinica, Shenyang 110015 Central Iron and Steel Research Institute, Beijing 100081, China
Zhao Dongliang
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, China
Get access

Abstract

Based on the tight-binding bond recursion method, the energetics parameters of ∑3[111] grain boundary in nickel are investigated. The theoretical results indicate that the boron enhances interatomic energy between the host atoms, and between impurity and nickel atoms. Calculations of the energy of the grain boundary segregation show that boron, nitrogen, and phosphorus have the tendency to segregate onto the grain boundary and segregation property of boron is stronger than that of nitrogen and phosphorus.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Vasudevan, A.K. and Petrevic, J.D., Mat. Sci. Eng. A 155, 1(1992).Google Scholar
2 Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
3 Paju, M. and Moller, R., Scripta Metall. 18, 813 (1984).Google Scholar
4 Erhart, H. and Grabke, HJ., Scripta Metall. 15, 512(1981).Google Scholar
5 Maurer, R. and Gleiter, H., Scripta Metall. 19, 1009 (1985).Google Scholar
6 Aucouturier, M., Journal De Physique C6, 175 (1982).Google Scholar
7 Goodwin, L. et al. , Phys. Rev. Lett. 60, 2050 (1988).CrossRefGoogle Scholar
8 Painter, G.S. and Averill, F.W., Phys. Rev. Lett. 58, 234 (1987).CrossRefGoogle Scholar
9 Eberhart, M.E., Vvedensky, D.D., Phys. Rev. Lett. 58, 61 (1987)..CrossRefGoogle Scholar
10 Eberhart, M.E., Vvedensky, D.D., Materials Science Forum 46, 169 (1989).Google Scholar
11 Painter, G.S., Phys. Rev. Lett. 70, 3959 (1993).Google Scholar
12 Heine, V., Solid State Physics, 35, 1 (1980).Google Scholar
13 Nex, C.M.M.M., J.Phys. A 11, 653 (1978).Google Scholar
14 Slater, J.C. and Koster, J.F., Phys. Rev. 94, 1498 (1954).Google Scholar
15 HaiTison, W.A.. Electi'onicStructureandthe Properties of Solid. (Freeman, San Francisco, 1980).Google Scholar
16 Johannes, R. L. et al. , Phys. Rev. Lett. 36, 372 (1976).CrossRefGoogle Scholar
17 Wang, Chongyu et al. , Proc. of International Workshop on Physics of Materials, B5–l (1989).Google Scholar
18 Mauren, R., Gleiter, H., Scripta Metall. 18 (1985).Google Scholar
19 Erhart, H. and Grabke, HJ., Scripta Metall. 15, 531 (1981).Google Scholar
20 Hashimoto, M. et al. , Scripta Metall. 16, 267 (1982).Google Scholar
21 Kelly, M.J., Solid State Physics 35, 302 (1980).Google Scholar