Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T10:58:29.675Z Has data issue: false hasContentIssue false

Electronic Properties of Ultrathin Isoelectronic Intralayers in Semiconductors

Published online by Cambridge University Press:  26 February 2011

K. A. Mäder
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich, Switzerland Institut de Physique Appliquée, EPF Lausanne, 1015 Lausanne, Switzerland
A. Baldereschi
Affiliation:
Institut de Physique Appliquée, EPF Lausanne, 1015 Lausanne, Switzerland IRRMA, PH Ecublens, 1015 Lausanne, and University of Trieste, Italy
Get access

Abstract

An empirical tight-binding Koster-Slater approach is used to determine the electronic properties of ultrathin“quantum wells”in semiconducting host materials of the zincblende or diamond structure. The“quantum well”is viewed as a giant two-dimensional isoelectronic impurity, and treated in a perturbational Green's function approach. We present results on the AlAs/GaAs and on the InP/InAs systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Taira, K., Kawai, H., Hase, I., Kaneko, K., and Watanabe, N., Appl. Phys. Lett. 53, 495 (1988)CrossRefGoogle Scholar
[2] Sato, M. and Horikoshi, Y., Surf. Sci. 228, 192 (1990)Google Scholar
[3] Cingolani, R., Brandt, O., Tapfer, L., Scamarcio, G., La Rocca, G., and Ploog, K., Phys. Rev. B 42, 3209 (1990)Google Scholar
[4] Carlin, J. F., Houdré, R., Rudra, A., and Ilegems, M., Appl. Phys. Lett. 59 (23), (1991)CrossRefGoogle Scholar
[5] Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures, (les éditions de physique, Les Ulis, France, 1988)Google Scholar
[6] Foulon, Y. and Priester, C., Phys. Rev. B 44, 5889 (1991)Google Scholar
[7] Koster, G. F. and Slater, J. C., Phys. Rev. 96, 1208 (1954)CrossRefGoogle Scholar
[8] Baldereschi, A. and Hopfield, J. J., Phys. Rev. Lett. 28, 171 (1972)CrossRefGoogle Scholar
[9] Hjalmarson, H. P., Vogl, P., Wolford, D. J., and Dow, J. D., Phys. Rev. Lett. 44, 810 (1980)Google Scholar
[10] Mäder, K. A. and Baldereschi, A., Proc. Int. Meeting on the Optics of Excitons in Confined Systems, edited by D'Andrea, A., Del Sole, R., Girlanda, R., and Quattropani, A. (The Institue of Physics, Bristol, UK, 1992)Google Scholar
[11] Hjalmarson, H. P., J. Vac. Sci. Technol. 21, 524 (1982)Google Scholar
[12] Wilke, S. and Hennig, D., Phys. Rev. B 43, 12470 (1991)CrossRefGoogle Scholar
[13] Andreani, L. C. (private communication)Google Scholar
[14] Boring, P. and Gil, B. (private communication)Google Scholar
[15] Vogl, P., Hjalmarson, H. P. and Dow, J. D., Phys. Chem. Solids 44, 365 (1983)CrossRefGoogle Scholar
[16] Harrison, W. A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980)Google Scholar
[17] Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954)Google Scholar
[18] Priester, C., Allan, G., and Lannoo, M., Phys. Rev. B 37, 8519 (1988)CrossRefGoogle Scholar
[19] Economou, E. N., Green's Functions in Quantum Physics, (Springer-Verlag, Berlin, 1979)CrossRefGoogle Scholar
[20] In ref. [10] we used a slightly different definition and therefore a different value for A. The results are almost unaffected, however.Google Scholar
[21] Data in Science and Technology, Semiconductors: Group IV Elements and III-V Compounds, editor Madelung, O. (Springer-Verlag, Berlin, 1991)Google Scholar
[22] Gil, B., Lefebvre, P., Boring, P., Moore, K. J., Duggan, G., and Woodbridge, K., Phys. Rev. B 44, 1942 (1991)Google Scholar
[23] Sham, L. J. and Lu, Y.-T., J. Luminescence 44, 207 (1989)Google Scholar
[24] this results in a heavy hole valence band offset of 0.426 eV, and a conduction band offset ΔEc = -0.54 eV, which is at variance with ΔEC = -0.346 eV as obtained in Ref. [6]Google Scholar