Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T21:22:22.767Z Has data issue: false hasContentIssue false

Electronic Properties and Device Applications of Hot-Wire CVD Polycrystalline Silicon Films

Published online by Cambridge University Press:  15 February 2011

A. R. Middya
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, CNRS UPR 0258, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
J. Guillet
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, CNRS UPR 0258, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
R. Brenot
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, CNRS UPR 0258, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
J. Perrin
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, CNRS UPR 0258, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
J. E. Bouree
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, CNRS UPR 0258, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
C. Longeaud
Affiliation:
Laboratoire de Genie Electrique de Paris (CNRS URA 0127), Ecole Superieure d'Electricite, Universites Paris VI et XI, Plateau du Moulon, F-91192 Gif sur Yvette Cedex, France
J. P. Kleider
Affiliation:
Laboratoire de Genie Electrique de Paris (CNRS URA 0127), Ecole Superieure d'Electricite, Universites Paris VI et XI, Plateau du Moulon, F-91192 Gif sur Yvette Cedex, France
Get access

Abstract

Polycrystalline silicon films (5 to 30 μm thick) have been deposited on glass substrates at low temperatures (400–550 °C) with a rate of 15 Å/s by hot-wire chemical vapour deposition (HWCVD). The homogeneity of the deposited layer is ±5% on a 8 cm diameter substrate. The films have columnar microstructure and a textured surface. The undoped films (carrier concentration, 1011 cm−3) have a resistivity of 105-106 Ω-cm, activation energy of 0.50 ± 0.05 eV and Hall mobility of 14 ± 4 cm2 /V.s. By in situ gas phase doping, resistivity can be varied by six to seven orders of magnitude. Incorporation of dopant atoms such as boron into the film, strongly influences its morphological and crystallographic structure. The mobility lifetime product of undoped films is low (10−8 cm2/V), possibly due to the presence of a high density of dangling bonds defects and broad band-tails. This product can be improved by a factor of 5 to 10 by using in-situ hydrogen passivation in the same reactor at lower temperature (350–400 °C) within one hour. The results of many complementary experiments suggest that hydrogen treatment mainly improves carrier mobility by a factor of 3 to 4 by passivating extended defects. Preliminary results on application of these types of materials in unoptimized P-I-N solar cells on c-Si and glass substrates are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Werner, J. W., Bergmann, R. and Brendel, R., in Advances in Solid State Physics, Vol. 34 edited by Heibig, R. (Vieweg, Braunschweig, Wiesbaden, 1994) p. 115.Google Scholar
2. Finger, F., Hopke, P., Luysberg, M., Carius, R., Wagner, H. and Scheib, M., Appl. Phys. Lett. 65, 2588 (1994).Google Scholar
3. Shi, Z., Young, T. L., Zheng, G. F. and Green, M., Solar Energy Materials & Solar cells 31, 5 (1993).Google Scholar
4. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M. C., Andreu, J. and Lloret, A., Appl. Phys. A 59(1994)645.Google Scholar
5. Middya, A. R., Lloret, A., Perrin, J., Hue, J., Moncel, J. L., Parey, J. Y. and Rose, G. in Amorphous Silicon Technology - 1995, edited by Schiff, E. A., Hack, M., Madan, A., Matsuda, A. and Powell, M. (Mater. Res. Soc. Proc. 377, Pittsburgh, PA, 1995) p. 119.Google Scholar
6. Middya, A. R., Guillet, J., Perrin, J., Lloret, A. and Bouree, J. E., Proc 13th ECPVESC (1995) p. 1704.Google Scholar
7. Veprek, S., F.-A., , Sarott, and Iqbal, Z., Physica Rev. B, 36, 3344 (1987).Google Scholar
Richter, H., Wang, Z. P. and Ley, L. 39, 625 (1981).Google Scholar
8. Werner, J. H., in Solid State Phenomena, Vol. 37–38 (Scitec Publication, Swtzerland, 1994) p. 213.Google Scholar
9. Nickel, N. H., Johnson, N. M. and Jackson, W. B., in Solid State Phenomena, Vol. 37–38 (Scitec Publication, Swtzerland, 1994) p. 367.Google Scholar
10. Brenot, R., Vanderhaghen, R., Drevillon, B., French, I. and Roca I Cabarrocas, P., Thin Solid Films (1997) (In press).Google Scholar