Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T05:31:27.406Z Has data issue: false hasContentIssue false

Electronic Angular Momentum Effects in the Photophysical Behavior of Fullerenes

Published online by Cambridge University Press:  15 February 2011

S. M. Argentine
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
A. H. Francis
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
Get access

Abstract

The intensity of the electronic origin in the emission spectrum of C70 exhibits a strong solvent sensitivity. The intensity of this peak increases relative to the vibronic features as the dielectric constant of the solvent increases. This solvent dependence is explained by an extension of Platt's Perimeter Free Electron Orbital model. The fullerenes, in particular C60 and C70, possess a nearly spherical symmetry that gives rise to the presence of significant electronic orbital angular momentum. The unexpected spectral sensitivity is shown to arise from quenching of the electronic angular momentum by the solvent environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shin, E., Park, J., Lee, M., Kim, D., Suh, Y.D., Yang, S.I., Jin, S.M., Kim, S.K., Chem. Phys. Lett. 209, 427 (1993).Google Scholar
2. Williams, R.M., Verhoeven, J.W., Chem. Phys. Lett. 194, 446 (1992).Google Scholar
3. Sun, Y.-P., Bunker, C.E., J. Phys. Chem. 97, 6770 (1993).Google Scholar
4. Palewska, K., Sworakowski, J., Chojnacki, H., Meister, E., Wild, U.P., J. Phys. Chem 97, 12167 (1993).Google Scholar
5. Arbogast, J.W., Foote, C.S., J. Am. Chem. Soc. 113, 8886 (1991).Google Scholar
6. Catalan, J., Elguero, J., J. Am. Chem. Soc. 115, 9249 (1993).Google Scholar
7. Kim, D., Lee, M., J. Am. Chem. Soc. 114, 4429 (1992).Google Scholar
8. Wang, Y., J. Phys. Chem. 96, 764 (1992).Google Scholar
9. Platt, J. R., J. Chem. Phys. 17, 484 (1949).Google Scholar
10. Argentine, S.M., Francis, A.H., Chen, C.-C., Lieber, C.M., Siegel, J.S., J. Phys. Chem. 98, 7350 (1994).Google Scholar
11. Lianos, P., Georghiou, S., Photochem. Photobiol. 30, 355 (1979).Google Scholar
12. Berlman, I. B., Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic Press, New York, 1971). p. 40.Google Scholar
13. Platt, J. R., J. Opt. Soc. Am. 43, 252 (1953).Google Scholar
14. Langklide, F.W., Thulstrup, E.W., Michl, J., J. Chem, Phys. 78, 3372 (1983).Google Scholar
15. Savina, M.R., Lohr, L.L., Francis, A.H., Chem. Phys. Lett. 205, 200 (1993).Google Scholar
16. Gallup, G.A., Chem. Phys. Lett. 187, 187 (1991).Google Scholar
17. Ball, D.W., J. Chem. Ed. 71, 463 (1994).Google Scholar
18. Rioux, F., J. Chem. Ed. 71 464 (1994).Google Scholar
19. Baker, J., Fowler, P.W., Lazzeretti, P., Malagoli, M., Zanasi, R., Chem. Phys. Lett. 184, 182 (1991).Google Scholar
20. Andreoni, W., Gygi, F., Parrinello, M., Chem. Phys. Lett. 189, 241 (1992).Google Scholar
21. Scuseria, G.E., Chem. Phys. Lett. 180, 451 (1991).Google Scholar
22. Shumwat, J., Satpathy, S., Chem. Phys. Lett. 211, 595 (1993).Google Scholar
23. Sun, Y.-P., Bunker, C.E., Nature 365, 398 (1993).Google Scholar
24. Ying, Q., Maracek, J., Chu, b., Chem. Phys. Lett. 219, 214 (1994).Google Scholar
25. Martin, T.P., Naher, U., Schaber, H., Zimmerman, U., Phys. Rev. Lett. 70, 3079 (1993).Google Scholar