Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-23T13:14:29.888Z Has data issue: false hasContentIssue false

Electronic And Structural Properties Of Interfaces Created By Potassium Deposition ON TiO2 (110) Surfaces

Published online by Cambridge University Press:  25 February 2011

R. J. Lad
Affiliation:
Laboratory for Surface Science & Technology, University of Maine, Orono, ME 04469.
L. S. Dake
Affiliation:
Laboratory for Surface Science & Technology, University of Maine, Orono, ME 04469.
Get access

Abstract

Potassium was deposited onto stoichiometric TiO2 (110) surfaces and the chemical bonding and structure were studied with UPS, XPS, LEED, and RHEED. Potassium interacts strongly with the oxygen anions of the TiO2 and reduces the valency of Ti cations at the interface. At submonolayer potassium coverages, a large charge transfer to the substrate causes a sharp drop in work function, a population of electronic states within the bulk TiO2 band gap, and surface band bending. After large potassium doses at 300 K, multilayers of K2O are formed by diffusion of oxygen anions from the substrate, creating a substoichiometric TiO2−x interface composition. No metallic potassium is present even after large doses. The K2O layers remain stable after annealing as high as 900 K, and LEED indicates that they are disordered. RHEED characterization is limited by the roughness of the stoichiometric TiO2 (110) surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bonzel, H.P., Bradshaw, A.M., and Erti, G., Phvsics and Chemistry of Alkali Metal Adsorption. (Elsevier Science Publishers, NY, 1989).Google Scholar
2. Bonzel, H.P., Surf. Sci. Rep. 8, 43 (1987).Google Scholar
3. Spicer, W.E., J. Appl. Phys. 12, 115 (1977).Google Scholar
4. Michel, E.G., Oellig, E.M., Asensio, M.C., and Miranda, R., Surf. Sci. 189/190. 245 (1987).Google Scholar
5. Michel, E.G., Ortega, J.E., Oellig, E.M., Asensio, M.C., Ferron, J., and Miranda, R., Phys. Rev. B 38, 13399 (1988).CrossRefGoogle Scholar
6. Woratschek, B., Sesselmann, W., Kuppers, J., Erti, G., and Haberland, H., J. Chem. Phys. 86, 2411 (1987).Google Scholar
7. Ortega, J., Ferron, J., Miranda, R., Laubschat, C., Domke, M., Prietsch, M., and Kaindl, G., Phys. Rev. B 22, 12751 (1989).Google Scholar
8. Henrich, V.E., Rep. Progr. Phys. 48, 1481 (1985).Google Scholar
9. Onishi, H., Aruga, T., Egawa, C., and Iwasawa, Y., Surf. Sci. 121, 479 (1987).Google Scholar
10. Onishi, H., Aruga, T., Egawa, C., and Iwasawa, Y., Surf. Sci. 122, 54 (1988).Google Scholar
11. Wu, M.C. and Moller, P.J., Surf. Sci. 224, 250 (1989).Google Scholar
12. Zhong, Q. and Ohuchi, F.S., J. Vac. Sci. Technol. A 8, 2107 (1990).Google Scholar
13. Cameron, S. and Dwyer, D.J., Surf. Sci. 128, 315 (1988).Google Scholar
14. Miranda, R., in reference 1, pp. 425–447.Google Scholar
15. Henrich, V.E., Dresselhaus, G., and Zeiger, H.J., Phys. Rev. Lett. 36 1335 (1976).Google Scholar
16. Antonik, M.D. and Lad, R.J., J. Vac. Sci. Technol. A (in press).Google Scholar
17. Zhang, Z., Jeng, S.P., and Henrich, V.E., Phys. Rev. B 43, 12004 (1991).Google Scholar
18. Goodenough, J.B., in Process in Solid State Chemistry, edited by Reiss, H. (Pergamon, NY, 1972), p 145.Google Scholar
19. Wandelt, K., in reference 1, pp. 25–44.Google Scholar
20. Petersson, L.G. and Karlsson, S.E., Physica Scripta 16, 425 (1977).Google Scholar
21. Gopel, W., Anderson, J.A., Frankel, D., Jaenig, M., Phillips, K., Schafer, J.A., and Rocker, G., Surf. Sci. 139, 333 (1984).Google Scholar