Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T01:50:41.985Z Has data issue: false hasContentIssue false

Electronic and Spatial Structure Studies of Cadmium and Zinc Dialkyldithiocarbamate Molecules in Nonaqueous Solutions Used in the Processes Spray Pyrolysis

Published online by Cambridge University Press:  10 February 2011

S. B. Erenburg
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3, Novosibirsk 630090, RUSSIA. simon@che.nsk.su
N. V. Bausk
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3, Novosibirsk 630090, RUSSIA
S. M. Zemskova
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3, Novosibirsk 630090, RUSSIA
S. V. Tkachev
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3, Novosibirsk 630090, RUSSIA
L. N. Mazalov
Affiliation:
Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3, Novosibirsk 630090, RUSSIA
Get access

Abstract

CdK EXAFS and 113Cd NMR spectra, ZnK EXAFS and XANES spectra were measured for solutions of cadmium and zinc dialkyldithiocarbamates in organic solvents with different donor numbers: tributylphosphine, methylene chloride, benzene, dibutylsulfide, pyridine, dimethylsulfoxide and for some model compounds. The parameters of the local surroundings of the Cd and Zn atoms for complex forms in solutions were determined using EXAFS . Spatial structure models of the complex forms in a metal chelate - nonaqueous solvent system are suggested. It is established that coordination of nitrogen atoms by cadmium atoms in pyridine solutions is realized for both Cd[(C2H5)2NCS2 ]2 and Cd[(n−C4 H9)2NCS2]2. For the tributylphosphine solution of Cd[(n−C4H9) 2NCS2]2 and Zn[(n−C4H9)2NCS2]2, additional coordination of the phosphorus atoms of the solvent molecules by the metal atoms are established.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gutman, V., Coordination Chemistry in Non-Aqueous Solutions, Springer, New York (1968).Google Scholar
2. Burger, K., Solvation, Ionic, and Complex Formation Reactions in Non-Aqueous Solvents: Experimental Methods for Their Investigation, Elsevier, Amsterdam (1983).Google Scholar
3. Nekipelov, V. M. and Zamaraev, K. I., Coord. Chem. Rev., 61, 185 (1985).Google Scholar
4. Schmidbaur, H., Novak, R., Huber, B., and Muller, G., Organomet., 6, 2666 (1987).Google Scholar
5. Torgov, V. G., Veryovkin, G. V., Denisov, V. V., Tkachev, S. V., Zh. Neorg. Khim., 30, 1012 (1985).Google Scholar
6. Abrahams, B. F., Dakternieks, D., Hoskins, B. F., and Winter, G., Aust. J. Chem., 41, 757 (1988).Google Scholar
7. Natu, G. N., Kulkarni, S. B., and Dhar, P. S., Thermochim. Acta, 54, 297 (1982).Google Scholar
8. Zharovskii, L. F., Zav'yalova, L. V., Rakhlin, M. Ya., and Svechnikov, S. V., Poluprovodn. Tekh. Mikroelektron., No. 29, 64 (1979).Google Scholar
9. Summers, M. F., Coord. Chem. Rev., 86, 43 (1988).Google Scholar
10. Abrahams, B. F., Dakternieks, D., and Winter, G., Inorg. Chim. Acta, 162, 211 (1989).Google Scholar
11. Ohtaki, H. and Radnai, T., Chem. Rev., 93, 1157 (1993).Google Scholar
12. Miyanaga, T. and Fujikawa, T., L Phys. Soc. Jpn., 63, 1036 (1994).Google Scholar
13. Munoz-Paez, A., Diaz, S., Perez, P.J., et al., Physica B, 208, 395 (1995).Google Scholar
14. Erenburg, S. B., Mazalov, L. N., Bausk, N. V., Drozdova, M. K., Russian J. Struct. Chem., 35, 517 (1994).Google Scholar
15. Mazalov, L. N. and Erenburg, S. B., Russian J. Struct. Chem., 35, 548 (1994).Google Scholar
16. Erenburg, S. B., Mazalov, L. N., Bausk, N. V., Drozdova, M. K., Torgov, V. G., Russian J. Struct. Chem. 36, 941 (1995).Google Scholar
17. Coucouvanis, D., Prog. Inorg. Chem., 11, 234 (1970).Google Scholar
18. Larionov, S. V., Kirichenko, V. N., Zemskova, S. M., Oglezneva, I. M., Koord. Khim., 16, 79 (1990).Google Scholar
19. Zemskova, S. M., Oglezneva, I. M., Fedotov, M. A., et al., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., No. 5, 8993 (1990).Google Scholar
20. Zeng, D., Hampden-Smith, M. J., Alam, T. M., Rheingold, A. L., Polyhedron, 13, 2715 (1994).Google Scholar
21. Glinskaya, L. A., Klevtsova, R. F., Zemskova, S. M., Russian J. Struct. Chem., 33, 91 (1992).Google Scholar
22. Shugam, E. A. and Agre, V. M., Kristallografiya, 13, 253 (1968).Google Scholar
23. Motevally, M., O'Brien, P., Walsh, J. R. and Watson, I. M., Polyhedron, 15, 2801 (1996).Google Scholar
24. Zeng, D., Hampden-Smith, M. J. and Alam, T. M., Polyhedron, 13, 2715 (1994).Google Scholar