Skip to main content Accessibility help
×
Home

Electronic and Optical Properties of Si/SiO2 Superlattices from First Principles: Role of Interfaces.

  • Pierre Carrier (a1), Gilles Abramovici (a1) (a2), Laurent J. Lewis (a1) and M. W. C. Dharma-wardana (a3)

Abstract

The observation of intense luminescence in Si/SiO2 superlattices (SLs) has lead to new theoretical research on silicon-based materials. We have performed first-principles calculations using three Si/SiO2 SL models in order to examine the role of interfaces on the electronic structure and optical properties. The first two models are derived directly from crystalline structures and have simple interfaces. These models have been studied using the full-potential, linearized-augmented-plane-wave method, in the local-density-approximation (LDA). The optical absorption within the interband transition theory (excluding excitonic effects) have been deduced. The Si(001)-SiO2 interface structure is shown to affect the optical behaviour. Following these observations, we have considered a more realistic, fully-relaxed model. The projector-augmented-wave method under the LDA is used to perform the structural relaxation as well as band structure and optical calculations. The role of confinement on the energy gap is studied by inserting additional silicon slabs into the supercell. Direct energy gaps are observed and the energy gap is found to decrease with increasing silicon slab thickness, as observed experimentally. The role of the interface has been considered in more details by studying the contribution to the energy gap of Si atoms having different oxidation patterns; partially oxidized Si atoms at the interface, as well as Si atoms inside the Si layer, are shown to contribute to the transitions at the energy gap.

Copyright

References

Hide All
1. Lu, Z. H., Lockwood, D. J., Baribeau, J.- M., Nature 378, 258 (1995)
2. Kanemitsu, Y., Okamoto, S., Phys. Rev. B, 56, R15561 (1997) ; S.V. Novikov, J. Sinkkonen, O. Kilpelä, S.V. Gastev, J. Vac. Sci. Technol. B 15(4), 1471 (1997); L. Khriachtchev, M. Rä sä nen, S. Novikov, O. Kilpelä, J. Sinkkonen, J. Appl. Phys. 86, 5601 (1999) ; V. Mulloni, R. Chierchia, C. Mazzeleni, G. Pucker, L. Pavesi, P. Bellutti, Philos. Mag. B 80, 705 (2000) ; Y. Kanemitsu, M. Liboshi, T. Kushida, Appl. Phys. Lett. 76, 2200 (2000).
3. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990); V. Lehman, U. Gösele, Appl. Phys. Lett. 58, 856 (1991).
4. Kanemitsu, Y., Okamoto, S., Phys. Rev B 56, R15561 (1997).
5. Kageshima, H., Shiraishi, K., Mat. Res. Soc. Symp. Proc. 486, 337 (1998).
6. Neaton, J. B., Muller, D. A., Ashcroft, N.W., Phys. Rev. Lett. 85, 1298 (2000).
7. Blaha, P., Schwarz, K., Luitz, J., WIEN97, Vienna University of Technology 1997. [Improved and updated Unix version of the original copyrighted WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990).]
8. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994); G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999).
9. Kresse, G., Furthmüller, J., VASP 4.4, Vienna University of Technology 1997. [Improved and updated Unix version of the original copyrighted VASP/VAMP code, which was published by G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15-50 (1996).]
10. Yu, P. Y., Cardona, M., Fundamentals of Semiconductors, page 251, (Springer, Berlin, 1996).
11. Herman, F., Batra, I. P., The Physics of SiO2 and its Interfaces, page 1, ed. by Pantelides, S.T., (Pergamon, Oxford, 1978).
12. Tit, N., Dharma-wardana, M. W. C., J. Appl. Phys. 86, 1 (1999).
13. The initial Si/SiO2 structure used here to generate the FRMs is the “Model III” described in Pasquarello, A., Hybertsen, M. S., and Car, R., Appl. Surf. Sci. 104/105, 317 (1996).
14. Tran, M., Tit, N., Dharma-wardana, M. W. C., Appl. Phys. Lett. 75, 4136 (1999).
15. Blöchl, P. E., Phys. Rev. B 49, 16223 (1994); G. Gilat, N. R. Bharatiya, Phys. Rev B 12, 3479 (1975); J. Rath, A. J. Freeman, Phys. Rev. B 11, 2109 (1975).
16. Albrecht, S., Reining, L., Sole, R. Del, Onida, G., Phys. Rev. Lett. 80, 4510 (1998).
17. Lu, Z. H., Graham, M.J., Jiang, D. T., Tan, K.H., Appl. Phys. Lett. 63, 2941 (1993); F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, Phys. Rev. B 38, 6084 (1988).

Electronic and Optical Properties of Si/SiO2 Superlattices from First Principles: Role of Interfaces.

  • Pierre Carrier (a1), Gilles Abramovici (a1) (a2), Laurent J. Lewis (a1) and M. W. C. Dharma-wardana (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed