Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T00:56:06.667Z Has data issue: false hasContentIssue false

Electron Trapping in Amorphous Silicon - A Quantum Molecular Dynamics Study

Published online by Cambridge University Press:  25 February 2011

Lin H. Yang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439.
Rajiv K. Kalia
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439.
Priya Vashishta
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439.
Get access

Abstract

Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius ∼ 3 Å at finite temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Spear, W. E., J. Non-Cryst. Solids 90, 171 (1987).Google Scholar
2. Selloni, A., Carnevali, P., Car, R., and Parrinello, M., Phys. Rev. Lett. 59, 823 (1987).Google Scholar
3. Barnett, R. N., Landman, U., and Nitzan, A., J. Chem. Phys. 89, 2242 (1988).Google Scholar
4. Kalia, R. K. and Harris, J., Solid State Commun., in press (1990).Google Scholar
5. Feit, M. D., Fleck, J. A., and Steiger, A., J. Comput. Phys. 42, 412 (1982).Google Scholar
6. Verlet, L., Phys. Rev. 152, 98 (1967).Google Scholar
7. Stillinger, F. H., and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
8. Luedtke, W. D. and Landman, U., Phys. Rev. B 40, 1164 (1989).Google Scholar
9. Bachelet, G. B., Hamann, D. R., and Schlüter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
10. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
11. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
12. Ching, W. Y., Lin, C. C., and Guttman, L., Phys. Rev. B 16 5488 (1977).Google Scholar