Skip to main content Accessibility help

Electron Transport Through Epitaxial Metal/Semiconductor Heterostructures

  • A. F. J. Levi (a1), R. T. Tung (a1), J. L. Batstone (a1), J. M. Gibson (a1), M. Anzlowar (a1) and A. Chantre (a2)...


Abrupt, epitaxial silicide/silicon heterostructures may be grown so that, for the first time, the physics of electron transport across near perfect, single crystal, metal/semiconductor interfaces may be probed experimentally. Transport measurements through type-A and -B oriented NiSi2 layers on Si(111) substrates have revealed Schottky barrier heights differing by 140 meV. In this paper we present results of experiments designed to explore the possible role of bulk and interface defects in determining the potential barrier at these near ideal epitaxial metal-semiconductor contacts. We have found little evidence for the presence of defects and the Schottky barrier is insensitive to details of the microscopic interfacial perfection. By contrast we find that both the electrical quality and magnitude of the barrier occurring at the NiSi2 /Si(100) heterojunction are dependent upon details of the microscopic interfacial perfection.



Hide All
1. Tung, R. T., Levi, A. F. J., and Gibson, J. M., J. Vac. Sci. Technol. in press.
2. Phillips, J. M. and Augustyniak, W. M., Mat. Res. Soc. Symp. Proc. 54, 307 (1986); Appl. Phys. Lett. 48, 463 (1986).
3. Tung, R. T., Levi, A. F. J., and Gibson, J. M., Appl. Phys. Lett. 48, 635 (1986).
4. Tung, R. T., Gibson, J. M., and Levi, A. F. J., Appl. Phys. Lett. 48, 1264 (1986).
5. Nakata, Y., Asada, M., and Suematsu, Y., Electron. Lett. 22, 58 (1986); IEEE J. Quantum Electron. 22, 1880 (1986).
6. Tung, R. T., Gibson, J. M., and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983); Appl. Phys. Lett. 42, 888 (1983).
7. Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).
8. Hauenstein, R. J., Schlesinger, T. E., McGill, T. C., Hunt, D. B., and Schowalter, L. J., Appl. Phys. Lett. 47, 853 (1985).
9. Tung, R. T., Levi, A. F. J., Gibson, J. M., Ng, K. K., and Chantre, A., Mat. Res. Soc. Symp. Proc. 54, 457 (1986).
10. Tung, R. T., Ng, K. K., Gibson, J. M., and Levi, A. F. J., Phys. Rev. B33, 7077 (1986).
11. Liehr, M., Schmidt, P. E., Le Goues, F. K., and Ho, P. S., Phys. Rev. Lett. 54, 2139 (1985). The authors’ claim that δø is zero, in contrast to all other published reports which find δø to be finite, makes the issue of assigning a value to δø a “controversial” one.
12. Chantre, A., Levi, A. F. J., Tung, R. T., Dautremont-Smith, W. C., and Anzlowar, M., Phys. Rev. B34, 4415 (1986).
13. Johnson, N. M., Herring, C., and Code, D. J., Phys. Rev. Lett. 56, 769 (1986).
14. Pankove, J. I., Wance, R. O., and Berkeyheiser, J. E., Appl. Phys. Lett. 15, 1100 (1984).
15. Pearton, S. J., Proc. Mat. Res. Soc. 59, 459 (1986).
16. Pankove, J. I., Lampert, M. A., and Tarng, M. L., Appl. Phys. Lett. 32, 439 (1978).
17. Seager, C. H. and Ginley, D. S., Appl. Phys. Lett. 34, 337 (1979).
18. Johnson, N. M., Biegelsen, D. K., Moyer, M. D., Deline, V. R., and Evans, C. A. Jr, Appl. Phys. Lett. 88, 995 (1981).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed