Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T06:36:05.464Z Has data issue: false hasContentIssue false

Electron position: jumping in double concentric quantum rings

Published online by Cambridge University Press:  07 July 2011

I. Filikhin
Affiliation:
North Carolina Central University, Durham, NC, 27707, U.S.A.
S. Matinyan
Affiliation:
North Carolina Central University, Durham, NC, 27707, U.S.A.
J. Nimmo
Affiliation:
North Carolina Central University, Durham, NC, 27707, U.S.A.
B. Vlahovic
Affiliation:
North Carolina Central University, Durham, NC, 27707, U.S.A.
Get access

Abstract

Semiconductor heterostructures as quantum dots or quantum rings (QR) demonstrate discrete atom-like energy level structure. In an atom the position of an electron can be changed by electromagnetic field influence with accompaniment of quantum number change. In present work we show that in the weak coupled Double Concentric Quantum Ring (DCQR), the electron jumping is possible due to tunneling accompanied with level anti-crossing which has a place in a magnetic field. We study DCQR composed of GaAs in an Al0.70Ga0.30As substrate under influence of a magnetic field. In our model the DCQR is considered within three dimensional single sub-band effective mass approach. When a magnetic field is applied in the z direction, perpendicular to the DCQR plane. The results of the numerical calculations for DCQR are presented for DCQRs of different geometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aronov, A.G. and Sharvin, Yu.V., Rev. Mod. Phys. 59, 755 (1987); T. Chakraborty and P. Pietilainen, Phys. Rev. B50, 8460(1994); A. Lorke and R. J. Luyken, Physica (Amsterdam) 256B, 424 (1998); A.O. Govorov et al. Phys. Rev. B66, 081309 (2002); J. Simonin, C. R. Proetto, Z. Barticevic, and G. Fuster, Phys. Rev. B 70, 205305 (2004); B. C. Lee, O. Voskoboynikov and C. P. Lee, Physica E24, 87 (204); J. I. Climente, J. Planelles et al. Phys. Rev. B73, 235327 (2006). Google Scholar
[2] Mano, T. et al. . Nano Letters 5, 425 (2005); T. Kuroda et al. Phys. Rev. B72, 205301(2005). Google Scholar
[3] Voskoboynikov, O., et al. . Phys. Rev. B66, 155306 (2002); Y. Li, H.M. Lu, O. Voskoboynikov, C.P. Lee and S.M. Sze. Surf. Sci. 532–535, 81(2003); J. Cui et al. Appl. Phys. Lett. 83, 2907, 2003. B. Szafran and F.M. Peeters, Phys. Rev. B72, 155316 (2005). Google Scholar
[4] Arsoski, V., Tadic, M. and Peeters, F.M., Acta Physica Polonica, 117, 733 (2010).Google Scholar
[5] Szafran, B. and Peeters, F.M., Phys. Rev. B72, 155316 (2005).Google Scholar
[6] Bayer, M., Korkusinski, M., Hawrylak, P., Gutbrod, T., Michel, M., Forchel, A., Phys. Rev. Lett. 90, 186801 (2003).Google Scholar
[7] Filikhin, I., Suslov, V. M., and Vlahovic, B., Phys. Rev. B73, 205332 (2006).Google Scholar
[8] Filikhin, I., Matinyan, S., and Vlahovic, B., Phys. Lett. A375, 620 (2011).Google Scholar