Skip to main content Accessibility help
×
Home

Electron Beam Induced Two-State Noise in Carbon Nanotubes

  • Jack Chan (a1), Brian G. Burke (a2), Chong Hu (a3), Joe Campbell (a4), Lloyd Harriott (a5) and Keith A. Williams (a6)...

Abstract

Discrete current switching is induced in carbon nanotubes by electron beam irradiation. Switching amplitudes of 3% to 6% are observed at room temperature. Switching is created by electron beam exposure with dosage as low as 1000 pC/cm. Relative switching amplitude remains constant as the bias voltage varies, suggesting that current fluctuation is dominated by mobility fluctuation. Changes in the noise power spectral density following electron beam exposure will be discussed.

Copyright

References

Hide All
1. Rius, G.. et al., Microelectronics Engineering 84, 1596 (2007).
2. Yuzvinsky, T. D., Fennimore, A. M., Mickelson, W., Esquivias, C. and Zettl, A., Appl. Phys lett. 86, 053109 (2005).
3. Holmes-Siedle, A., Nucl. Instr. Methods A 121, 169 (1974).
4. Kanzaki, K.. et al., J. Appl. Phys. 101, 034317 (2007).
5. Suzuki, S., Kanzaki, K., Homma, Y., and Fukuba, S., Jpn. J. Appl. Phys. 43, L1118 (2004).
6. Terrones, M., Banhart, F., Grobert, N., Charlier, J. C., Terrones, H., and Ajayan, P. M., Phys. Rev. Lett. 89, 7 (2002).
7. Vijavaraghavan, A.. et al., Nano. Lett. 5, 8 (2005).
8. Marquardt, C. W.. et al., Nano. Lett. 8, 9 (2008).
9. Crespi, V. H., Chopra, N. G., Cohen, M. L., Zettl, A. and Louie, S. G., Phys. Rev. B 54, 8 (1996).
10. Collins, P. G., Fuhrer, M. S. and Zettl, A., Appl. Phys. Lett. 76, 7 (2000).
11. Snow, E. S., Novak, J. P., Lay, M. D. and Perkins, F. K., Appl. Phys. Lett. 85, 18 (2004).
12. Lin, Y., Appenzeller, J., Knoch, J., Chen, Z. and Avouris, Ph., Nano. Lett. 6, 930 (2006).
13. Chan, J.. et al., Phys. Rev. B 80, 033402 (2009).
14. Kim, U. J., Kim, K. H., Kim, K. T., Min, Y. and Park, W., Nanotech. 19, 285705 (2008).
15. Liu, F., Bao, M., Want, K. L., Zhang, D. and Zhou, C., Phys. Rev. B 74, 035438 (2006).
16. Peng, H. B., Hughes, M. E. and Golovchenko, J. A., Appl. Phys. Lett. 89, 243502 (2006).
17. Vasudevan, S.. et al., IEEE. Sensor Journal 8, 6 (2008).
18. Collins, P. G.. et al., Science 287, 1801 (2000).
19. Vijayaraghavan, A.. et al., J. Appl. Phys. 100, 024315 (2006).
20. Liu, K.. et al., JACS. 131, 62 (2009).
21. Lin, Y., Tsang, J. C., Freitag, M. and Avouris, Ph., Nanotech. 18, 295202 (2007).
22. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. and Dai, H., Nature 395, 29 (1998).
23. Simons, M., Monteith, L. K. and Hauser, J. R., IEEE Transactions on Electronics Devices 15, 12 (1968).
24. Gdula, R. A., IEEE Transactions on Electronics Devices 26, 4 (1979).
25. Liu, F., Wang, K. L., Zhang, D. and Zhou, C., Appl. Phys.Lett. 89, 063116 (2006).
26. ishigami, M.. et al., Appl. Phys. Lett. 88, 203116 (2006).
27. Wang, N., Heinze, S. and Tersoff, J., Nano. Lett. 7, 913 (2007).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed