Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-30T23:25:36.130Z Has data issue: false hasContentIssue false

Electron and Hole Relaxation Pathways in II-VI Semiconductor Nanocrystals

Published online by Cambridge University Press:  09 August 2011

V. I. Klimov
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
Ch. Schwarz
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
X. Yang
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
D. W. McBranch
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
C. A. Leatherdale
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
M. G. Bawendi
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Get access

Abstract

Femtosecond (fs) broad-band transient absorption (TA) is used to study the intra-band relaxation and depopulation dynamics of electron and hole quantized states in CdSe nanocrystals (NC's) with a range of surface properties. Instead of the drastic reduction in the energy relaxation rate expected due to a 'phonon bottleneck', we observe a fast sub-picosecond 1P-to-1S relaxation, with the rate enhanced in NC's of smaller radius. We use fs IR TA to probe electron and hole intraband transitions, which allows us to distinguish between electron and hole pathways leading to the depopulation of NC quantized states. In contrast to electron relaxation, which is controlled by NC surface passivation, depopulation of hole quantized states is extremely fast (sub-ps-to-ps time scales) in all types samples, independent of NC surface treatment (including NC's overcoated with a ZnS layer). Our results indicate that ultrafast hole dynamics are not due to trapping at surface defects, but rather arise from relaxation into intrinsic NC states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Efros, Al. L. and Efros, A., Sov. Phys. Sem. 16, 772 (1982).Google Scholar
2. Brus, L., Appl. Phys. A 53, 465 (1991).Google Scholar
3. Ekimov, A. I. etal.,J. Opt. Soc. Am. B 10, 100 (1993).Google Scholar
4. Norris, D. and Bawendi, M., Phys. Rev. B 53, 16338 (1996).Google Scholar
5. Bawendi, M.et al., Phys. Rev. Lett. 65, 1623 (1990).Google Scholar
6. Woggon, U. etal., Phys. Rev. B 54, 17681 (1996).Google Scholar
7. Klimov, V. and McBranch, D., Phys. Rev. Lett. 80, 4028 (1998).Google Scholar
8. Guyot-Sionnest, P. and Hines, M., Appl. Phys. Lett. 72, 686 (1998).Google Scholar
9. Bockelman, U. and Bastard, G., Phys. Rev. B 42, 8947 (1990).Google Scholar
10. Benisty, H. et al., Phys. Rev. B 44, 10945 (1991).Google Scholar
11. Inoshita, T. and Sakaki, H., Phys. Rev. B 44 7260 (1992).Google Scholar
12. Efros, Al. L., Phys. Rev. B 44, 7448 (1992).Google Scholar
13. Klimov, V., Bolivar, P. H., and Kurz, H., Phys. Rev. B 51, 1463 (1996)Google Scholar
14. Rougemont, F. de et al., Appl. Phys. Lett. 5Q, 1619 (1987).Google Scholar
15. Klimov, V. and McBranch, D., Opt. Lett. 21, 277 (1998).Google Scholar
16. Murray, C., Norris, D., and Bawendi, M., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
17. Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).Google Scholar
18. Klimov, V., Hunsche, S., and Kurz, H., Phys. Status Solidi B 188, 259 (1995).Google Scholar
19. Hunsche, S.et al., Appl. Phys. B 62, 3 (1996).Google Scholar
20. Kang, K. I. etal., Phys. Rev. B 41, 15449 (1993).Google Scholar
21. Klimov, V., Hunsche, S., and Kurz, H., Phys. Rev. B 50, 8110 (1994).Google Scholar
22. Norris, D. J. et al., Phys. Rev. Lett. 72, 2612 (1994).Google Scholar
23. Sercel, P. C., Phys. Rev. B 51, 14532 (1995).Google Scholar
24. Bockelman, U. and Egler, T., Phys. Rev. B 44, 15574 (1992).Google Scholar
25. Efros, Al. L., Kharchenko, V. A., and Rosen, M., Solid State Commun. 91, 281 (1995).Google Scholar
26. Chestnoy, N., Harris, T., Hull, R., and Brus, L., J. Phys. Chem. 90, 3393 (1986).Google Scholar