Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T10:00:08.361Z Has data issue: false hasContentIssue false

Electron Accumulation in AIGaSb/InAs Qw System, - Evidence for Coexistence of Deep Acceptor and Donor -

Published online by Cambridge University Press:  03 September 2012

S. Ideshita
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan
A. Furukawa
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Y. Mochizuki
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan
M. Mizuta
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

We investigated the reason of the (imbalanced) accumulation of electrons in AIGaSb/lnAs/AIGaSb QW system in spite of the p-type conduction of undoped AIGaSb. It was found that the concentration of the accumulated electrons negligibly depended on the number of the interfaces, but increased linearly with the effective AlSb thickness. These results indicate that donor levels in AIGaSb are the dominant electron sources. We propose a model that the deep acceptors with larger concentration and donors coexist, and the electron accumulation depends on the energy position of the acceptor in AIGaSb with respect to the quantum level in the InAs well. Acceptor levels obtained experimentally are about 100 meV higher than the bottom of the InAs conduction band, and we succeeded in eliminating the electron accumulation by making the quantum level of the InAs well higher than this acceptor level. The origins of the donors and acceptors are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Luo, L. F., Beresfold, R., Wang, W. I., and Munekata, H., Appl. Phys. Lett. 55, 789 (1989).Google Scholar
[2] Werking, J., Tuttle, G., Nguyen, C., Hu, E. L., and Kroemer, H., Appl. Phys. Lett. 57, 905 (1990).Google Scholar
[3] Yoh, K., Moriuchi, T., and Inoue, M., Proceedings of the 22nd International Conference on Solid State Devices and Materials, Sendai, Japan 1990 (Komiyama Printing, Tokyo, 1990), p. 67.Google Scholar
[4] Tuttle, G., Kroemer, H., and English, J. H., J. Appl. Phys. 67, 3032 (1990).CrossRefGoogle Scholar
[5] Munekata, H., Méndez, E. E., Lye, Y., and Esaki, L., Surf. Sci. 174, 449 (1986).Google Scholar
[6] Kop'ev, P. S., Ivacov, S. V., Ledentsoz, N. N., Mel'tser, B. Ya., Nadtochii, M. Yu., and Ustinov, V. M., Sov. Phys. Semicond. 24, 450 (1990).Google Scholar
[7] Altarelli, M., Maan, J. C., Chang, L. L., and Esaki, L., Phys. Rev. B35, 9867 (1987).Google Scholar
[8] Gualtieri, G. J., Schwartz, G. P., Nuzzo, R. G., Malik, R. J., and Walker, J. F., J. Appl. Phys. 61, 5337 (1987).Google Scholar
[9] Gualiteri, G. J., Schwartz, G. P., Nuzzo, R. G., and Nuzzo, Q. A., Apll. Phys. Lett. 49, 1037 (1986).Google Scholar
[10] Mujica, A. and Munoz, A., Solid State Commmun. 81, 961 (1992).Google Scholar
[11] Fukushima, A., Furukawa, A., Mizuta, M., and Torikai, T., unpublished.Google Scholar