Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T06:30:14.018Z Has data issue: false hasContentIssue false

Electromigration Study of Cu Dual-damascene Interconnects with a CVD MSQ Low k Dielectric

Published online by Cambridge University Press:  01 February 2011

Xia Lu
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
Ki-Don Lee
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
Sean Yoon
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
Hideki Matsuhashi
Affiliation:
PDF Solutions, Inc., San Jose, CA 95110
Michael Lu
Affiliation:
LSI Logic Corporation, Santa Clara, CA 95054
Kai Zhang
Affiliation:
LSI Logic Corporation, Santa Clara, CA 95054
Paul S. Ho
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

Electromigration reliability in Cu dual-damascene interconnects with a CVD MSQ low k dielectric was investigated. Statistical studies were carried out using the critical length (LC) test structures containing multi-link line/via elements with varying line lengths. EM lifetime characteristics, critical current density-length product (jL)c, and failure mechanisms were discussed and compared with Cu/oxide structures. Our results suggested that the diffusion at the cap layer interface was the dominant mechanism for EM mass transport. The confinement effect, in terms of an effective modulus B, can be used to account for the shorter EM lifetime and smaller critical current density-length product (jL)c observed for Cu/CVD MSQ low k interconnects. Failure analysis by FIB confirmed the presence of multiple failure modes including voiding at the via bottom, Cu extrusion and delamination at Cu/cap layer interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hu, C. K. and Luther, B., Materials Chemistry and Physics, 41, 1995, pp.17.Google Scholar
[2] Hu, C. K. and Harper, J. M. E., Materials Chemistry and Physics, 52, 1998, pp.516 Google Scholar
[3] Korhonen, M. A., Borgesen, P., Tu, K. N., Li, Che-Yu, J. Appl. Phys., 73, 3790 (1993).Google Scholar
[4] Hau-Riege, S. P., Thompson, C. V., Mater. Res. Symp. Proc., 612, 2000, pp. D10.2.1–D.102.3.6Google Scholar
[5] Ogawa, E. T., Blaschke, V. A., Bierwag, A., Ki-Don Lee, Matsuhashi, H., Griffiths, D., Ramamurthi, A., Justison, P. R., Havemann, R. H., Ho, P. S., Mater. Res. Soc. Symp. Proc., 612, 2000, pp. D2.3.1–D.2.3.6Google Scholar
[6] Blech, I. A., J. Appl. Phys., 47, 1203 (1976).Google Scholar
[7] Hau-Riege, S. P., J. Appl. Phys., 91, 2014 (2002).Google Scholar
[8] Lee, K.D., Ogawa, E. T., Yoon, S., Lu, X. and Ho, P. S., Appl. Phys. Lett., 82, 2032 (2003).Google Scholar
[9] Black, J., IEEE Trans. Electron. Devices, ED-16, 338, (1969).Google Scholar
[10] Ogawa, E. T., Lee, K.D., Matsuhashi, H., Ko, K.S., Justison, P. R., Ramamurthi, A. N., Bierwag, A. J., Ho, P. S., Blaschke, V. A., and Havemann, R. H., 2001 IEEE International Reliability Physics Symposium Proceedings 39th Annual, 2001, pp. 341349.Google Scholar
[11]Ogawa, E. T., Bierwag, A. J., Lee, K.D., Matsuhashi, H., Justison, P. R., Ramamurthi, A. N., Ho, P. S., Blaschke, V. A., Griffiths, D., Nelsen, A., Breen, M., and Havemann, R. H., Appl. Phys. Lett., 78(18), 2001, pp. 26522654.Google Scholar
[12] Lee, K.D., Ogawa, E. T., Matsuhashi, H., Justison, P. R., Ko, K.S., Ho, P. S., and Blaschke, V. A., Appl. Phys. Lett., 79, 3236 (2001).Google Scholar