Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T22:14:22.689Z Has data issue: false hasContentIssue false

Electromagnetically-Induced Surface Microstructures and Enhanced Field Effects in Laser Processing*

Published online by Cambridge University Press:  21 February 2011

S. R. J. Brueck
Affiliation:
Lincoln Laboratory, Massachusetts Institute of TechnologyLexington, Massachusetts 02173
D. J. Ehrlich
Affiliation:
Lincoln Laboratory, Massachusetts Institute of TechnologyLexington, Massachusetts 02173
D. V. Murphy
Affiliation:
Lincoln Laboratory, Massachusetts Institute of TechnologyLexington, Massachusetts 02173
J. Y. Tsao
Affiliation:
Lincoln Laboratory, Massachusetts Institute of TechnologyLexington, Massachusetts 02173
Get access

Abstract

The presence of microstructures on surfaces undergoing laser processing modifies the electromagnetic boundary conditions and can lead to dramatic changes in the intensity of the local electromagnetic fields and hence in the reaction rates and final morphologies resulting from the laser reaction. Examples are presented for periodic structures on planar surfaces — the rippling of Ag surfaces during laser oxidation; and for isolated dielectric structures — enhanced scattering (∼ 100x) due to dipolar resonances in Si particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the Department of the Air Force, in part with specific support from the Air Force Office of Scientific Research, by the Defense Advanced Research Projects Agency, and by the Army Research Office.

References

REFERENCES

1. Brueck, S. R. J. and Ehrlich, D. J., Phys. Rev. Lett. 48, 1678 (1982).CrossRefGoogle Scholar
2. Ehrlich, D. J., Brueck, S. R. J. and Tsao, J. Y., Appl. Phys. Lett. 41, 630 (1982).Google Scholar
3. See, for example, Chang, R. K. and Furtak, T. K., eds., Surface Enhanced Raman Scattering, (Plenum, New York, 1982).Google Scholar
4. Murphy, D. V. and Brueck, S. R. J. in Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Osgood, R. M., Brueck, S. R. J. and Schlossberg, H. R., eds. (North-Holland, New York, 1983) pp 8194.Google Scholar
5. Murphy, D. V. and Brueck, S. R. J., Optics Lett. 8, 494 (1983).Google Scholar
6. Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972).Google Scholar
7. Sipe, J. E., Preston, J. S. and Von Driel, H. M., Phys. Rev. B 27, 1141 (1983).Google Scholar
8. Brueck, S. R. J., Ehrlich, D. J. and Tsao, J. Y. (to be published).Google Scholar
9. Rosasco, G. J. and Bennett, H. S., J. Opt. Soc. Am. 68, 1242 (1978).Google Scholar
10. Chylek, P., Kiehl, J. T. and Ko, M. K. W., Appl. Opt. 17, 3019 (1978).Google Scholar
11. Ashkin, A. and Dziedzic, J. M., Phys. Rev. Lett. 38, 1351 (1977).Google Scholar
12. Chew, H. and Wang, D.-S., Phys. Rev. Lett. 49, 490 (1982).Google Scholar
13. Chang, R. K., Owen, J. F., Barber, P. W., Messinger, B. J., and Brenner, R. E., J. Raman Spectrosc. 10, 178 (1981).Google Scholar
14. Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Silversmith, D. J. and Mountain, R. W., J. Electrochem. Soc. 129, 2812 (1982)Google Scholar