Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-03T03:10:26.694Z Has data issue: false hasContentIssue false

Electrolyte-Gate a-Si:H Thin Film Transistors

Published online by Cambridge University Press:  01 February 2011

Dina I. Gonçalves
Affiliation:
INESC Microsistemas e Nanotecnologias (INESC-MN), Lisbon, Portugal Center of Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
Duarte M. Prazeres
Affiliation:
Center of Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal Department of Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
Virginia Chu
Affiliation:
INESC Microsistemas e Nanotecnologias (INESC-MN), Lisbon, Portugal
João P. Conde
Affiliation:
INESC Microsistemas e Nanotecnologias (INESC-MN), Lisbon, Portugal Department of Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

This paper presents the fabrication and characterization of electrolyte-gate (EG) hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs). In these devices, the metal gate is replaced by a Pt electrode immersed in an electrolyte. The source-drain current of these devices is modulated by the voltage applied through the Pt electrode. Device characteristics are compared with structurally equivalent top-gate a-Si:H TFTs. The EG devices show higher mobility and smaller subthreshold slope than their counterparts with metal gate and work in a narrower voltage range. EG-TFTs show chemical sensitivity, illustrated by a voltage shift in the transfer curve as a consequence of pH variation. The sensitivity of the devices to pH is different depending on whether the top layer in contact with the electrolyte is SiO2 or SiNx.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bergveld, P., Sens. Actuators B. 88, 120 (2003).10.1016/S0925-4005(02)00301-5Google Scholar
2 Pernstich, K. P., Haas, S., Oberhoff, D., Goldmann, C., Gundlach, D. J., Batlogg, B., Rashid, A. N. and Shitter, G., J. Appl. Phys. 96 (11) 64316438 (2004).10.1063/1.1810205Google Scholar
3 Yan, F., Estrela, P., Mo, Y., Migliorato, P., Maeda, H., Inoue, S. and Shimoda, T., Appl. Phys. Lett. 86, 053901–1-3 (2005).10.1063/1.1854192Google Scholar
4 Garrido, J., Härtl, A., Kuck, S., Stutzmann, M., Williams, O. A. and Jackmann, R. B., Appl. Phys. Lett. 86, 073504–1-3 (2005).10.1063/1.1866632Google Scholar
5 Yang, W. and Hamers, R. J., Appl. Phys. Lett. 85 (16), 36263628 (2004).10.1063/1.1808885Google Scholar
6 Steinhoff, G., Hermann, M., Schaff, W. J., Eastman, L. F., Stutzmann, M. and Eickhoff, M., Appl. Phys. Lett. 83 (1), 177179 (2003).10.1063/1.1589188Google Scholar
7 Uslu, F., Ingebrandt, S., Mayer, D., Böcker-Meffert, S., Odenthal, M. and Offenhäusser, A., Biosens. Bioelect. 19, 17231731 (2004).10.1016/j.bios.2004.01.019Google Scholar
8 Bergveld, P., IEEE Sensor Conference, Toronto, 126 (2003).Google Scholar
9 Yin, L., Chou, J., Chung, W., Sun, T. and Hsiung, S., IEEE Trans. Biomed. Eng. 48 (3), 340344 (2001).Google Scholar
10 Liao, H., Chi, L., Chou, J., Chung, W., Sun, T. and Hsiung, S., Mat. Chem. Phys. 59, 611 (1999).10.1016/S0254-0584(99)00033-4Google Scholar