Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T05:40:13.177Z Has data issue: false hasContentIssue false

Electroluminescent Textiles using Sputter-deposited Amorphous Nitride-Rare-Earth Ion Coatings

Published online by Cambridge University Press:  11 February 2011

M. E. Kordesch
Affiliation:
Department of Physics, Ohio University, Athens, OH 45701
Hugh H. Richardson
Affiliation:
Department of Chemistry, Ohio University, Athens, OH 45701
Get access

Abstract

Wide bandgap semiconductors have been sputter deposited onto non-crystalline substrates, low melting point materials, including polymer fibers, textiles and glasses. The semiconductors are amorphous and can be deposited over large (square meter) areas economically. The electro-optical properties of these materials are not defect limited, and do not require thermal processing. Alternating current electroluminescent device structures/coatings composed of rare-earth ion doped nitrides have been deposited onto point-bonded fabrics, polymer membranes, and polymer sheets. Light emission is detected from the coated fabrics over the entire visible range, UV and IR. A notable feature of fabric-based structures is the inclusion of ambient air in the fabric voids. Increased light emission intensity is obtained by extracting electrons from the plasma discharge during device operation. These fabrics do not require weaving, which could be difficult with semi-crystalline or brittle semiconductor materials. Multilayer assembly and bonding with continuous sheets, cladding, filling and or contact bonding are all available at any point in the fabric assembly. Non-woven, pin-bonded, materials may still function after some damage, e.g. rips or punctures, due to redundant connections at each pad. Further advantages are the simple incorporation of optically active ions, such as rare earths, high thermal conductivity, high breakdown voltage, and complete miscibility of the group III-A and -B nitrides, allowing bandgap engineering. The deposition process is scalable and may be applied to the fibers or yarns before or after fabric formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Steckl, A. J., Birkhahn, R., Appl. Phys. Lett. 73, 1700 (1998).Google Scholar
Heikenfeld, J., Garter, M., Lee, D.S., Birkhahn, R., Steckl, A. J., Appl. Phys Lett. 75, 1189 (1999).Google Scholar
3. Birkhahn, R., Garter, M., Steckl, A. J., Appl. Phys. Lett. 74, 2161 (1999).Google Scholar
4. Steckl, A.J., Garter, M., Lee, D.S., Heikenfeld, J., Birkhahn, R., Appl. Phys Lett. 75, 2184 (1999).Google Scholar
5. Jadwisienczak, W.M., Lozykowski, H.J., Perjeru, F., Chen, H., Kordesch, M., Brown, I.G., Appl. Phys. Lett. 76, 3376 (2000).Google Scholar
6. Chen, H., Gurumurugan, K., Kordesch, M.E., Jadwisienczak, W.M. and Lozykowski, H.J., MRS Internet Journal of Nitride Semiconductor Research, 5: U130U135 Suppl. 1 (2000).Google Scholar
7. Caldwell, M. L., Richardson, H.H. and Kordesch, M.E., MRS Internet Journal of Nitride Semiconductor Research, MRS INTERNET J N S R 5: U142U147 Suppl. 1 (2000).Google Scholar
8. Dimitrova, V., Van Patten, P.G., Richardson, H. H. and Kordesch, M.E., Applied Physics Letters, 77, 478–9 (2000).Google Scholar
9. Dimitrova, V., Van Patten, P.G., Richardson, H. and Kordesch, M.E., Applied Surface Science, 175–176, 481484,(2001).Google Scholar
10. Caldwell, M.L., Martin, A.L., Spalding, C.M., Dimitrova, V.I., Van Patten, P.G., Kordesch, M.E. and Richardson, H.H., J. Vac. Sci. Technol. A 19, 1894–97 (2001).Google Scholar
11. Caldwell, M.L., Martin, A.L., Dimitrova, V.I., Van Patten, P.G., Kordesch, M.E. and Richardson, H.H., Applied Physics Letters, 78, 12461248 (2001).Google Scholar
12. Caldwell, M.L., Van Patten, P.G., Kordesch, M.E. and Richardson, H.H., MRS Internet J. Nitride Semicond. Res. 6, 13 (2001).Google Scholar
13. Richardson, H.H., van Patten, P.G., Richardson, D.R., and Kordesch, M.E., Applied Physics Letters, 80, 22072209 (2002).Google Scholar
14. Chen, H., Chen, K., Drabold, D.A. and Kordesch, M.E., Applied Physics Letters, 77, 11171119 (2000).Google Scholar
15. Little, M.E. and Kordesch, M.E., Applied Physics Letters, 78, 28912892 (2001).Google Scholar